Slender phoretic theory of chemically active filaments
Artificial microswimmers, or ‘microbots’, have the potential to revolutionise non-invasive medicine and microfluidics. Microbots that are powered by self-phoretic mechanisms, such as Janus particles, often harness a solute fuel in their environment. Traditionally, self-phoretic particles are point l...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-09, Vol.898, Article A24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 898 |
creator | Katsamba, Panayiota Michelin, Sébastien Montenegro-Johnson, Thomas D. |
description | Artificial microswimmers, or ‘microbots’, have the potential to revolutionise non-invasive medicine and microfluidics. Microbots that are powered by self-phoretic mechanisms, such as Janus particles, often harness a solute fuel in their environment. Traditionally, self-phoretic particles are point like, but slender phoretic rods have become an increasingly prevalent design. While there has been substantial interest in creating efficient asymptotic theories for slender phoretic rods, hitherto such theories have been restricted to straight rods with axisymmetric patterning. However, modern manufacturing methods will soon allow fabrication of slender phoretic filaments with complex three-dimensional shapes. In this paper, we develop a slender body theory for the solute of self-diffusiophoretic filaments of arbitrary three-dimensional shape and patterning. We demonstrate analytically that, unlike other slender body theories, first-order azimuthal variations arising from curvature and confinement can make a leading-order contribution to the swimming kinematics. |
doi_str_mv | 10.1017/jfm.2020.410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02958203v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_410</cupid><sourcerecordid>2421443367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-b654eb9b0e6071d57a57348863b5bfa7bb303ca52cc38f3790c5ccc4373ce5d13</originalsourceid><addsrcrecordid>eNptkE1Lw0AQQBdRsFZv_oCAJ8HE2e_kWIpaoeBBPS-7m12TknTrJi3035uQohdPA8Obx_AQusWQYcDycePbjACBjGE4QzPMRJFKwfg5mgEQkmJM4BJddd0GAFMo5AyJ98ZtSxeTXRWi62ub9JUL8ZgEn9jKtbXVTXNMtO3rg0t83ejWbfvuGl143XTu5jTn6PP56WO5StdvL6_LxTq1VLI-NYIzZwoDToDEJZeaS8ryXFDDjdfSGArUak6spbmnsgDLrbWMSmodLzGdo_vJW-lG7WLd6nhUQddqtVircQek4DkBehjZu4ndxfC9d12vNmEft8N7ijCCGaNUyIF6mCgbQ9dF53-1GNRYUQ0V1VhRDRUHPDvhujWxLr_cn_Xfgx9NtnJ5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421443367</pqid></control><display><type>article</type><title>Slender phoretic theory of chemically active filaments</title><source>Cambridge University Press Journals Complete</source><creator>Katsamba, Panayiota ; Michelin, Sébastien ; Montenegro-Johnson, Thomas D.</creator><creatorcontrib>Katsamba, Panayiota ; Michelin, Sébastien ; Montenegro-Johnson, Thomas D.</creatorcontrib><description>Artificial microswimmers, or ‘microbots’, have the potential to revolutionise non-invasive medicine and microfluidics. Microbots that are powered by self-phoretic mechanisms, such as Janus particles, often harness a solute fuel in their environment. Traditionally, self-phoretic particles are point like, but slender phoretic rods have become an increasingly prevalent design. While there has been substantial interest in creating efficient asymptotic theories for slender phoretic rods, hitherto such theories have been restricted to straight rods with axisymmetric patterning. However, modern manufacturing methods will soon allow fabrication of slender phoretic filaments with complex three-dimensional shapes. In this paper, we develop a slender body theory for the solute of self-diffusiophoretic filaments of arbitrary three-dimensional shape and patterning. We demonstrate analytically that, unlike other slender body theories, first-order azimuthal variations arising from curvature and confinement can make a leading-order contribution to the swimming kinematics.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.410</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fabrication ; Filaments ; Fluid mechanics ; JFM Papers ; Kinematics ; Mechanics ; Medical sciences ; Microfluidics ; Microrobots ; Nanoparticles ; Physics ; Production methods ; Reynolds number ; Rods ; Slender bodies ; Solutes ; Sperm ; Swimming ; Theories ; Velocity</subject><ispartof>Journal of fluid mechanics, 2020-09, Vol.898, Article A24</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-b654eb9b0e6071d57a57348863b5bfa7bb303ca52cc38f3790c5ccc4373ce5d13</citedby><cites>FETCH-LOGICAL-c374t-b654eb9b0e6071d57a57348863b5bfa7bb303ca52cc38f3790c5ccc4373ce5d13</cites><orcidid>0000-0002-9037-7498 ; 0000-0001-6328-3018 ; 0000-0002-9370-7720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020004103/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://polytechnique.hal.science/hal-02958203$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Katsamba, Panayiota</creatorcontrib><creatorcontrib>Michelin, Sébastien</creatorcontrib><creatorcontrib>Montenegro-Johnson, Thomas D.</creatorcontrib><title>Slender phoretic theory of chemically active filaments</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Artificial microswimmers, or ‘microbots’, have the potential to revolutionise non-invasive medicine and microfluidics. Microbots that are powered by self-phoretic mechanisms, such as Janus particles, often harness a solute fuel in their environment. Traditionally, self-phoretic particles are point like, but slender phoretic rods have become an increasingly prevalent design. While there has been substantial interest in creating efficient asymptotic theories for slender phoretic rods, hitherto such theories have been restricted to straight rods with axisymmetric patterning. However, modern manufacturing methods will soon allow fabrication of slender phoretic filaments with complex three-dimensional shapes. In this paper, we develop a slender body theory for the solute of self-diffusiophoretic filaments of arbitrary three-dimensional shape and patterning. We demonstrate analytically that, unlike other slender body theories, first-order azimuthal variations arising from curvature and confinement can make a leading-order contribution to the swimming kinematics.</description><subject>Fabrication</subject><subject>Filaments</subject><subject>Fluid mechanics</subject><subject>JFM Papers</subject><subject>Kinematics</subject><subject>Mechanics</subject><subject>Medical sciences</subject><subject>Microfluidics</subject><subject>Microrobots</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Production methods</subject><subject>Reynolds number</subject><subject>Rods</subject><subject>Slender bodies</subject><subject>Solutes</subject><subject>Sperm</subject><subject>Swimming</subject><subject>Theories</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AQQBdRsFZv_oCAJ8HE2e_kWIpaoeBBPS-7m12TknTrJi3035uQohdPA8Obx_AQusWQYcDycePbjACBjGE4QzPMRJFKwfg5mgEQkmJM4BJddd0GAFMo5AyJ98ZtSxeTXRWi62ub9JUL8ZgEn9jKtbXVTXNMtO3rg0t83ejWbfvuGl143XTu5jTn6PP56WO5StdvL6_LxTq1VLI-NYIzZwoDToDEJZeaS8ryXFDDjdfSGArUak6spbmnsgDLrbWMSmodLzGdo_vJW-lG7WLd6nhUQddqtVircQek4DkBehjZu4ndxfC9d12vNmEft8N7ijCCGaNUyIF6mCgbQ9dF53-1GNRYUQ0V1VhRDRUHPDvhujWxLr_cn_Xfgx9NtnJ5</recordid><startdate>20200910</startdate><enddate>20200910</enddate><creator>Katsamba, Panayiota</creator><creator>Michelin, Sébastien</creator><creator>Montenegro-Johnson, Thomas D.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9037-7498</orcidid><orcidid>https://orcid.org/0000-0001-6328-3018</orcidid><orcidid>https://orcid.org/0000-0002-9370-7720</orcidid></search><sort><creationdate>20200910</creationdate><title>Slender phoretic theory of chemically active filaments</title><author>Katsamba, Panayiota ; Michelin, Sébastien ; Montenegro-Johnson, Thomas D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-b654eb9b0e6071d57a57348863b5bfa7bb303ca52cc38f3790c5ccc4373ce5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fabrication</topic><topic>Filaments</topic><topic>Fluid mechanics</topic><topic>JFM Papers</topic><topic>Kinematics</topic><topic>Mechanics</topic><topic>Medical sciences</topic><topic>Microfluidics</topic><topic>Microrobots</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Production methods</topic><topic>Reynolds number</topic><topic>Rods</topic><topic>Slender bodies</topic><topic>Solutes</topic><topic>Sperm</topic><topic>Swimming</topic><topic>Theories</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katsamba, Panayiota</creatorcontrib><creatorcontrib>Michelin, Sébastien</creatorcontrib><creatorcontrib>Montenegro-Johnson, Thomas D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsamba, Panayiota</au><au>Michelin, Sébastien</au><au>Montenegro-Johnson, Thomas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slender phoretic theory of chemically active filaments</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-09-10</date><risdate>2020</risdate><volume>898</volume><artnum>A24</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Artificial microswimmers, or ‘microbots’, have the potential to revolutionise non-invasive medicine and microfluidics. Microbots that are powered by self-phoretic mechanisms, such as Janus particles, often harness a solute fuel in their environment. Traditionally, self-phoretic particles are point like, but slender phoretic rods have become an increasingly prevalent design. While there has been substantial interest in creating efficient asymptotic theories for slender phoretic rods, hitherto such theories have been restricted to straight rods with axisymmetric patterning. However, modern manufacturing methods will soon allow fabrication of slender phoretic filaments with complex three-dimensional shapes. In this paper, we develop a slender body theory for the solute of self-diffusiophoretic filaments of arbitrary three-dimensional shape and patterning. We demonstrate analytically that, unlike other slender body theories, first-order azimuthal variations arising from curvature and confinement can make a leading-order contribution to the swimming kinematics.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.410</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-9037-7498</orcidid><orcidid>https://orcid.org/0000-0001-6328-3018</orcidid><orcidid>https://orcid.org/0000-0002-9370-7720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-09, Vol.898, Article A24 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02958203v1 |
source | Cambridge University Press Journals Complete |
subjects | Fabrication Filaments Fluid mechanics JFM Papers Kinematics Mechanics Medical sciences Microfluidics Microrobots Nanoparticles Physics Production methods Reynolds number Rods Slender bodies Solutes Sperm Swimming Theories Velocity |
title | Slender phoretic theory of chemically active filaments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slender%20phoretic%20theory%20of%20chemically%20active%20filaments&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Katsamba,%20Panayiota&rft.date=2020-09-10&rft.volume=898&rft.artnum=A24&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.410&rft_dat=%3Cproquest_hal_p%3E2421443367%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421443367&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_410&rfr_iscdi=true |