Predicting the permeability and specific surface area of compressed and uncompressed fibrous media including the Klinkenberg effect

In this study a geometric anisotropic two-strut model is presented to predict the permeability of fibrous porous media subject to compression. A further novelty of this study is the inclusion of the Klinkenberg effect in the permeability prediction of the two-strut model and existing three-strut mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2021-01, Vol.377, p.488-505
Hauptverfasser: Woudberg, S., Maré, E., van Heyningen, M.C., Theron, F., Le Coq, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue
container_start_page 488
container_title Powder technology
container_volume 377
creator Woudberg, S.
Maré, E.
van Heyningen, M.C.
Theron, F.
Le Coq, L.
description In this study a geometric anisotropic two-strut model is presented to predict the permeability of fibrous porous media subject to compression. A further novelty of this study is the inclusion of the Klinkenberg effect in the permeability prediction of the two-strut model and existing three-strut model. The specific surface area of the anisotropic models are predicted by making use of two approaches, i.e. a geometric approach and a combined kinematic-geometric approach. The Klinkenberg effect has also been introduced into the non-compressed models. The model predictions are compared to a variety of available experimental data for non-woven fibre media and metal foams from the literature and the correspondence proves to be satisfactory. The analytical modelling approach presented adds value to the empirical studies in the literature which comprises of curve fitting procedures together with the introduction of empirical coefficients into the Forchheimer or Ergun equations to obtain correlation with experimental data. [Display omitted] •Geometric models for compressed fibrous porous media are introduced.•Analytical equations are proposed for the permeability and specific surface area.•The combined effects of compression and the Klinkenberg effect are accounted for.•The proposed physically adaptable equations contain no empirical coefficients.•The analytical modelling procedure complements the empirical studies in literature.
doi_str_mv 10.1016/j.powtec.2020.08.081
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02955873v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591020308354</els_id><sourcerecordid>2481922454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-47b2be855c882750b77c891df749a80216d06dd3d72f1e21113b500b74e068603</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVoINuk36AHQU89eDOS_8mXQghNtmQhOSTQm5Cl0UZbr-VI9oac88WrrdvQU2BgYPjpzeg9Qj4zWDJg1fl2OfjnEfWSA4cliFTsiCyYqPMs5-LnB7IAyHlWNgxOyMcYtwBQ5QwW5PUuoHF6dP2Gjo9IBww7VK3r3PhCVW9oHFA76zSNU7BKI1UBFfWWar8bAsaI5g839f8NrGuDnyLdJW1FXa-7yfzbcNO5_hf2LYYNRWtRj2fk2Kou4qe__ZQ8XH2_v1xl69vrH5cX60znlRizom55i6IstRC8LqGtay0aZmxdNEoAZ5WBypjc1Nwy5IyxvC0hYQVCJSrIT8nXWfdRdXIIbqfCi_TKydXFWh5mwJuyTKbtWWK_zOwQ_NOEcZRbP4U-nSd5IVjDeVEWiSpmSgcfY0D7JstAHqKRWzlHIw_RSBCpDuLf5meYfrt3GGTUDnud3ArJD2m8e1_gN7glmiI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481922454</pqid></control><display><type>article</type><title>Predicting the permeability and specific surface area of compressed and uncompressed fibrous media including the Klinkenberg effect</title><source>Access via ScienceDirect (Elsevier)</source><creator>Woudberg, S. ; Maré, E. ; van Heyningen, M.C. ; Theron, F. ; Le Coq, L.</creator><creatorcontrib>Woudberg, S. ; Maré, E. ; van Heyningen, M.C. ; Theron, F. ; Le Coq, L.</creatorcontrib><description>In this study a geometric anisotropic two-strut model is presented to predict the permeability of fibrous porous media subject to compression. A further novelty of this study is the inclusion of the Klinkenberg effect in the permeability prediction of the two-strut model and existing three-strut model. The specific surface area of the anisotropic models are predicted by making use of two approaches, i.e. a geometric approach and a combined kinematic-geometric approach. The Klinkenberg effect has also been introduced into the non-compressed models. The model predictions are compared to a variety of available experimental data for non-woven fibre media and metal foams from the literature and the correspondence proves to be satisfactory. The analytical modelling approach presented adds value to the empirical studies in the literature which comprises of curve fitting procedures together with the introduction of empirical coefficients into the Forchheimer or Ergun equations to obtain correlation with experimental data. [Display omitted] •Geometric models for compressed fibrous porous media are introduced.•Analytical equations are proposed for the permeability and specific surface area.•The combined effects of compression and the Klinkenberg effect are accounted for.•The proposed physically adaptable equations contain no empirical coefficients.•The analytical modelling procedure complements the empirical studies in literature.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2020.08.081</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anisotropy ; Chemical and Process Engineering ; Compression ; Curve fitting ; Empirical equations ; Engineering Sciences ; Environmental Engineering ; Environmental Sciences ; Experimental data ; Fibrous media ; Foamed metals ; Foams ; Klinkenberg ; Metal foams ; Permeability ; Porous media ; Specific surface ; Specific surface area ; Surface area</subject><ispartof>Powder technology, 2021-01, Vol.377, p.488-505</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jan 2, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-47b2be855c882750b77c891df749a80216d06dd3d72f1e21113b500b74e068603</citedby><cites>FETCH-LOGICAL-c368t-47b2be855c882750b77c891df749a80216d06dd3d72f1e21113b500b74e068603</cites><orcidid>0000-0002-9060-2755 ; 0000-0003-0888-1001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2020.08.081$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02955873$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Woudberg, S.</creatorcontrib><creatorcontrib>Maré, E.</creatorcontrib><creatorcontrib>van Heyningen, M.C.</creatorcontrib><creatorcontrib>Theron, F.</creatorcontrib><creatorcontrib>Le Coq, L.</creatorcontrib><title>Predicting the permeability and specific surface area of compressed and uncompressed fibrous media including the Klinkenberg effect</title><title>Powder technology</title><description>In this study a geometric anisotropic two-strut model is presented to predict the permeability of fibrous porous media subject to compression. A further novelty of this study is the inclusion of the Klinkenberg effect in the permeability prediction of the two-strut model and existing three-strut model. The specific surface area of the anisotropic models are predicted by making use of two approaches, i.e. a geometric approach and a combined kinematic-geometric approach. The Klinkenberg effect has also been introduced into the non-compressed models. The model predictions are compared to a variety of available experimental data for non-woven fibre media and metal foams from the literature and the correspondence proves to be satisfactory. The analytical modelling approach presented adds value to the empirical studies in the literature which comprises of curve fitting procedures together with the introduction of empirical coefficients into the Forchheimer or Ergun equations to obtain correlation with experimental data. [Display omitted] •Geometric models for compressed fibrous porous media are introduced.•Analytical equations are proposed for the permeability and specific surface area.•The combined effects of compression and the Klinkenberg effect are accounted for.•The proposed physically adaptable equations contain no empirical coefficients.•The analytical modelling procedure complements the empirical studies in literature.</description><subject>Anisotropy</subject><subject>Chemical and Process Engineering</subject><subject>Compression</subject><subject>Curve fitting</subject><subject>Empirical equations</subject><subject>Engineering Sciences</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Experimental data</subject><subject>Fibrous media</subject><subject>Foamed metals</subject><subject>Foams</subject><subject>Klinkenberg</subject><subject>Metal foams</subject><subject>Permeability</subject><subject>Porous media</subject><subject>Specific surface</subject><subject>Specific surface area</subject><subject>Surface area</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxUVoINuk36AHQU89eDOS_8mXQghNtmQhOSTQm5Cl0UZbr-VI9oac88WrrdvQU2BgYPjpzeg9Qj4zWDJg1fl2OfjnEfWSA4cliFTsiCyYqPMs5-LnB7IAyHlWNgxOyMcYtwBQ5QwW5PUuoHF6dP2Gjo9IBww7VK3r3PhCVW9oHFA76zSNU7BKI1UBFfWWar8bAsaI5g839f8NrGuDnyLdJW1FXa-7yfzbcNO5_hf2LYYNRWtRj2fk2Kou4qe__ZQ8XH2_v1xl69vrH5cX60znlRizom55i6IstRC8LqGtay0aZmxdNEoAZ5WBypjc1Nwy5IyxvC0hYQVCJSrIT8nXWfdRdXIIbqfCi_TKydXFWh5mwJuyTKbtWWK_zOwQ_NOEcZRbP4U-nSd5IVjDeVEWiSpmSgcfY0D7JstAHqKRWzlHIw_RSBCpDuLf5meYfrt3GGTUDnud3ArJD2m8e1_gN7glmiI</recordid><startdate>20210102</startdate><enddate>20210102</enddate><creator>Woudberg, S.</creator><creator>Maré, E.</creator><creator>van Heyningen, M.C.</creator><creator>Theron, F.</creator><creator>Le Coq, L.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9060-2755</orcidid><orcidid>https://orcid.org/0000-0003-0888-1001</orcidid></search><sort><creationdate>20210102</creationdate><title>Predicting the permeability and specific surface area of compressed and uncompressed fibrous media including the Klinkenberg effect</title><author>Woudberg, S. ; Maré, E. ; van Heyningen, M.C. ; Theron, F. ; Le Coq, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-47b2be855c882750b77c891df749a80216d06dd3d72f1e21113b500b74e068603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Chemical and Process Engineering</topic><topic>Compression</topic><topic>Curve fitting</topic><topic>Empirical equations</topic><topic>Engineering Sciences</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Experimental data</topic><topic>Fibrous media</topic><topic>Foamed metals</topic><topic>Foams</topic><topic>Klinkenberg</topic><topic>Metal foams</topic><topic>Permeability</topic><topic>Porous media</topic><topic>Specific surface</topic><topic>Specific surface area</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woudberg, S.</creatorcontrib><creatorcontrib>Maré, E.</creatorcontrib><creatorcontrib>van Heyningen, M.C.</creatorcontrib><creatorcontrib>Theron, F.</creatorcontrib><creatorcontrib>Le Coq, L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woudberg, S.</au><au>Maré, E.</au><au>van Heyningen, M.C.</au><au>Theron, F.</au><au>Le Coq, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the permeability and specific surface area of compressed and uncompressed fibrous media including the Klinkenberg effect</atitle><jtitle>Powder technology</jtitle><date>2021-01-02</date><risdate>2021</risdate><volume>377</volume><spage>488</spage><epage>505</epage><pages>488-505</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>In this study a geometric anisotropic two-strut model is presented to predict the permeability of fibrous porous media subject to compression. A further novelty of this study is the inclusion of the Klinkenberg effect in the permeability prediction of the two-strut model and existing three-strut model. The specific surface area of the anisotropic models are predicted by making use of two approaches, i.e. a geometric approach and a combined kinematic-geometric approach. The Klinkenberg effect has also been introduced into the non-compressed models. The model predictions are compared to a variety of available experimental data for non-woven fibre media and metal foams from the literature and the correspondence proves to be satisfactory. The analytical modelling approach presented adds value to the empirical studies in the literature which comprises of curve fitting procedures together with the introduction of empirical coefficients into the Forchheimer or Ergun equations to obtain correlation with experimental data. [Display omitted] •Geometric models for compressed fibrous porous media are introduced.•Analytical equations are proposed for the permeability and specific surface area.•The combined effects of compression and the Klinkenberg effect are accounted for.•The proposed physically adaptable equations contain no empirical coefficients.•The analytical modelling procedure complements the empirical studies in literature.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2020.08.081</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9060-2755</orcidid><orcidid>https://orcid.org/0000-0003-0888-1001</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2021-01, Vol.377, p.488-505
issn 0032-5910
1873-328X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02955873v1
source Access via ScienceDirect (Elsevier)
subjects Anisotropy
Chemical and Process Engineering
Compression
Curve fitting
Empirical equations
Engineering Sciences
Environmental Engineering
Environmental Sciences
Experimental data
Fibrous media
Foamed metals
Foams
Klinkenberg
Metal foams
Permeability
Porous media
Specific surface
Specific surface area
Surface area
title Predicting the permeability and specific surface area of compressed and uncompressed fibrous media including the Klinkenberg effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20permeability%20and%20specific%20surface%20area%20of%20compressed%20and%20uncompressed%20fibrous%20media%20including%20the%20Klinkenberg%20effect&rft.jtitle=Powder%20technology&rft.au=Woudberg,%20S.&rft.date=2021-01-02&rft.volume=377&rft.spage=488&rft.epage=505&rft.pages=488-505&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2020.08.081&rft_dat=%3Cproquest_hal_p%3E2481922454%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481922454&rft_id=info:pmid/&rft_els_id=S0032591020308354&rfr_iscdi=true