A branching process approach to power markets
We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach wa...
Gespeichert in:
Veröffentlicht in: | Energy economics 2019-03, Vol.79, p.144-156 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | |
container_start_page | 144 |
container_title | Energy economics |
container_volume | 79 |
creator | Jiao, Ying Ma, Chunhua Scotti, Simone Sgarra, Carlo |
description | We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach was already exploited by Barndorff-Nielsen et al., who adopted the Ambit Field framework for describing the power price dynamics. The novelty contained in our approach consists of combining the basic features of both Branching Processes and Random Fields in order to get a realistic and parsimonious model setting. We shall provide some closed-form evaluation formulae for forward contracts. We discuss the risk premium behavior, by pointing out that in the present framework, a very realistic description arises. We outline a possible methodology for parameters estimation. We illustrate by graphical representation the main achievements of this approach.
•A new model for power prices including the jumps clustering features•Some explicit valuation formulas for the basic derivatives contracts in the modeling framework proposed•A risk premium analysis for the model introduced with a comparison with previous models•A statistical analysis supporting the modeling approach proposed |
doi_str_mv | 10.1016/j.eneco.2018.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02954986v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988318300811</els_id><sourcerecordid>2283308962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-90f4519e1a6bd0c036ea99fab433a519ddad020e96eab065ca6fe36448c68f173</originalsourceid><addsrcrecordid>eNp9ULFOwzAQtRBIlMIXsERiYkg424lrDwxVBRSpEgvMluNcaEKJg50W8fc4BDEy3enuvXfvHiGXFDIKVNy0GXZoXcaAygx4BsCOyIzKBU8FlfSYzIDmkCop-Sk5C6EFgEIUckbSZVJ609lt070mvXcWQ0hMHztjt8ngkt59ok_ejX_DIZyTk9rsAl781jl5ub97Xq3TzdPD42q5SW2R0yFVUOcFVUiNKCuwwAUapWpT5pybuKgqUwEDVHFegiisETVykefSClnTBZ-T60l3a3a69008_6WdafR6udHjDJgqciXFgUbs1YSNnj_2GAbdur3voj3NmOQcpBIsoviEst6F4LH-k6Wgxwx1q38y1GOGGriOGUbW7cTC-OyhQa-DbbCzWDUe7aAr1_zL_wbC2Xkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283308962</pqid></control><display><type>article</type><title>A branching process approach to power markets</title><source>PAIS Index</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jiao, Ying ; Ma, Chunhua ; Scotti, Simone ; Sgarra, Carlo</creator><creatorcontrib>Jiao, Ying ; Ma, Chunhua ; Scotti, Simone ; Sgarra, Carlo</creatorcontrib><description>We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach was already exploited by Barndorff-Nielsen et al., who adopted the Ambit Field framework for describing the power price dynamics. The novelty contained in our approach consists of combining the basic features of both Branching Processes and Random Fields in order to get a realistic and parsimonious model setting. We shall provide some closed-form evaluation formulae for forward contracts. We discuss the risk premium behavior, by pointing out that in the present framework, a very realistic description arises. We outline a possible methodology for parameters estimation. We illustrate by graphical representation the main achievements of this approach.
•A new model for power prices including the jumps clustering features•Some explicit valuation formulas for the basic derivatives contracts in the modeling framework proposed•A risk premium analysis for the model introduced with a comparison with previous models•A statistical analysis supporting the modeling approach proposed</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2018.03.002</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Branching Processes ; Economics and Finance ; Energy economics ; Energy markets ; Estimation ; Fields (mathematics) ; Graphical representations ; Humanities and Social Sciences ; Markets ; Mathematics ; Parameter estimation ; Power ; Prices ; Pricing ; Property ; Random Fields ; Risk behavior ; Risk premium term structure ; Risk taking ; Self-exciting structures</subject><ispartof>Energy economics, 2019-03, Vol.79, p.144-156</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-90f4519e1a6bd0c036ea99fab433a519ddad020e96eab065ca6fe36448c68f173</citedby><cites>FETCH-LOGICAL-c541t-90f4519e1a6bd0c036ea99fab433a519ddad020e96eab065ca6fe36448c68f173</cites><orcidid>0000-0003-4365-6539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eneco.2018.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27866,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02954986$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Ying</creatorcontrib><creatorcontrib>Ma, Chunhua</creatorcontrib><creatorcontrib>Scotti, Simone</creatorcontrib><creatorcontrib>Sgarra, Carlo</creatorcontrib><title>A branching process approach to power markets</title><title>Energy economics</title><description>We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach was already exploited by Barndorff-Nielsen et al., who adopted the Ambit Field framework for describing the power price dynamics. The novelty contained in our approach consists of combining the basic features of both Branching Processes and Random Fields in order to get a realistic and parsimonious model setting. We shall provide some closed-form evaluation formulae for forward contracts. We discuss the risk premium behavior, by pointing out that in the present framework, a very realistic description arises. We outline a possible methodology for parameters estimation. We illustrate by graphical representation the main achievements of this approach.
•A new model for power prices including the jumps clustering features•Some explicit valuation formulas for the basic derivatives contracts in the modeling framework proposed•A risk premium analysis for the model introduced with a comparison with previous models•A statistical analysis supporting the modeling approach proposed</description><subject>Branching Processes</subject><subject>Economics and Finance</subject><subject>Energy economics</subject><subject>Energy markets</subject><subject>Estimation</subject><subject>Fields (mathematics)</subject><subject>Graphical representations</subject><subject>Humanities and Social Sciences</subject><subject>Markets</subject><subject>Mathematics</subject><subject>Parameter estimation</subject><subject>Power</subject><subject>Prices</subject><subject>Pricing</subject><subject>Property</subject><subject>Random Fields</subject><subject>Risk behavior</subject><subject>Risk premium term structure</subject><subject>Risk taking</subject><subject>Self-exciting structures</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9ULFOwzAQtRBIlMIXsERiYkg424lrDwxVBRSpEgvMluNcaEKJg50W8fc4BDEy3enuvXfvHiGXFDIKVNy0GXZoXcaAygx4BsCOyIzKBU8FlfSYzIDmkCop-Sk5C6EFgEIUckbSZVJ609lt070mvXcWQ0hMHztjt8ngkt59ok_ejX_DIZyTk9rsAl781jl5ub97Xq3TzdPD42q5SW2R0yFVUOcFVUiNKCuwwAUapWpT5pybuKgqUwEDVHFegiisETVykefSClnTBZ-T60l3a3a69008_6WdafR6udHjDJgqciXFgUbs1YSNnj_2GAbdur3voj3NmOQcpBIsoviEst6F4LH-k6Wgxwx1q38y1GOGGriOGUbW7cTC-OyhQa-DbbCzWDUe7aAr1_zL_wbC2Xkk</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Jiao, Ying</creator><creator>Ma, Chunhua</creator><creator>Scotti, Simone</creator><creator>Sgarra, Carlo</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0003-4365-6539</orcidid></search><sort><creationdate>20190301</creationdate><title>A branching process approach to power markets</title><author>Jiao, Ying ; Ma, Chunhua ; Scotti, Simone ; Sgarra, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-90f4519e1a6bd0c036ea99fab433a519ddad020e96eab065ca6fe36448c68f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Branching Processes</topic><topic>Economics and Finance</topic><topic>Energy economics</topic><topic>Energy markets</topic><topic>Estimation</topic><topic>Fields (mathematics)</topic><topic>Graphical representations</topic><topic>Humanities and Social Sciences</topic><topic>Markets</topic><topic>Mathematics</topic><topic>Parameter estimation</topic><topic>Power</topic><topic>Prices</topic><topic>Pricing</topic><topic>Property</topic><topic>Random Fields</topic><topic>Risk behavior</topic><topic>Risk premium term structure</topic><topic>Risk taking</topic><topic>Self-exciting structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Ying</creatorcontrib><creatorcontrib>Ma, Chunhua</creatorcontrib><creatorcontrib>Scotti, Simone</creatorcontrib><creatorcontrib>Sgarra, Carlo</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Ying</au><au>Ma, Chunhua</au><au>Scotti, Simone</au><au>Sgarra, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A branching process approach to power markets</atitle><jtitle>Energy economics</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>79</volume><spage>144</spage><epage>156</epage><pages>144-156</pages><issn>0140-9883</issn><eissn>1873-6181</eissn><abstract>We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach was already exploited by Barndorff-Nielsen et al., who adopted the Ambit Field framework for describing the power price dynamics. The novelty contained in our approach consists of combining the basic features of both Branching Processes and Random Fields in order to get a realistic and parsimonious model setting. We shall provide some closed-form evaluation formulae for forward contracts. We discuss the risk premium behavior, by pointing out that in the present framework, a very realistic description arises. We outline a possible methodology for parameters estimation. We illustrate by graphical representation the main achievements of this approach.
•A new model for power prices including the jumps clustering features•Some explicit valuation formulas for the basic derivatives contracts in the modeling framework proposed•A risk premium analysis for the model introduced with a comparison with previous models•A statistical analysis supporting the modeling approach proposed</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2018.03.002</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4365-6539</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-9883 |
ispartof | Energy economics, 2019-03, Vol.79, p.144-156 |
issn | 0140-9883 1873-6181 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02954986v1 |
source | PAIS Index; ScienceDirect Journals (5 years ago - present) |
subjects | Branching Processes Economics and Finance Energy economics Energy markets Estimation Fields (mathematics) Graphical representations Humanities and Social Sciences Markets Mathematics Parameter estimation Power Prices Pricing Property Random Fields Risk behavior Risk premium term structure Risk taking Self-exciting structures |
title | A branching process approach to power markets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20branching%20process%20approach%20to%20power%20markets&rft.jtitle=Energy%20economics&rft.au=Jiao,%20Ying&rft.date=2019-03-01&rft.volume=79&rft.spage=144&rft.epage=156&rft.pages=144-156&rft.issn=0140-9883&rft.eissn=1873-6181&rft_id=info:doi/10.1016/j.eneco.2018.03.002&rft_dat=%3Cproquest_hal_p%3E2283308962%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283308962&rft_id=info:pmid/&rft_els_id=S0140988318300811&rfr_iscdi=true |