A branching process approach to power markets

We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy economics 2019-03, Vol.79, p.144-156
Hauptverfasser: Jiao, Ying, Ma, Chunhua, Scotti, Simone, Sgarra, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue
container_start_page 144
container_title Energy economics
container_volume 79
creator Jiao, Ying
Ma, Chunhua
Scotti, Simone
Sgarra, Carlo
description We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach was already exploited by Barndorff-Nielsen et al., who adopted the Ambit Field framework for describing the power price dynamics. The novelty contained in our approach consists of combining the basic features of both Branching Processes and Random Fields in order to get a realistic and parsimonious model setting. We shall provide some closed-form evaluation formulae for forward contracts. We discuss the risk premium behavior, by pointing out that in the present framework, a very realistic description arises. We outline a possible methodology for parameters estimation. We illustrate by graphical representation the main achievements of this approach. •A new model for power prices including the jumps clustering features•Some explicit valuation formulas for the basic derivatives contracts in the modeling framework proposed•A risk premium analysis for the model introduced with a comparison with previous models•A statistical analysis supporting the modeling approach proposed
doi_str_mv 10.1016/j.eneco.2018.03.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02954986v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988318300811</els_id><sourcerecordid>2283308962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-90f4519e1a6bd0c036ea99fab433a519ddad020e96eab065ca6fe36448c68f173</originalsourceid><addsrcrecordid>eNp9ULFOwzAQtRBIlMIXsERiYkg424lrDwxVBRSpEgvMluNcaEKJg50W8fc4BDEy3enuvXfvHiGXFDIKVNy0GXZoXcaAygx4BsCOyIzKBU8FlfSYzIDmkCop-Sk5C6EFgEIUckbSZVJ609lt070mvXcWQ0hMHztjt8ngkt59ok_ejX_DIZyTk9rsAl781jl5ub97Xq3TzdPD42q5SW2R0yFVUOcFVUiNKCuwwAUapWpT5pybuKgqUwEDVHFegiisETVykefSClnTBZ-T60l3a3a69008_6WdafR6udHjDJgqciXFgUbs1YSNnj_2GAbdur3voj3NmOQcpBIsoviEst6F4LH-k6Wgxwx1q38y1GOGGriOGUbW7cTC-OyhQa-DbbCzWDUe7aAr1_zL_wbC2Xkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283308962</pqid></control><display><type>article</type><title>A branching process approach to power markets</title><source>PAIS Index</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jiao, Ying ; Ma, Chunhua ; Scotti, Simone ; Sgarra, Carlo</creator><creatorcontrib>Jiao, Ying ; Ma, Chunhua ; Scotti, Simone ; Sgarra, Carlo</creatorcontrib><description>We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach was already exploited by Barndorff-Nielsen et al., who adopted the Ambit Field framework for describing the power price dynamics. The novelty contained in our approach consists of combining the basic features of both Branching Processes and Random Fields in order to get a realistic and parsimonious model setting. We shall provide some closed-form evaluation formulae for forward contracts. We discuss the risk premium behavior, by pointing out that in the present framework, a very realistic description arises. We outline a possible methodology for parameters estimation. We illustrate by graphical representation the main achievements of this approach. •A new model for power prices including the jumps clustering features•Some explicit valuation formulas for the basic derivatives contracts in the modeling framework proposed•A risk premium analysis for the model introduced with a comparison with previous models•A statistical analysis supporting the modeling approach proposed</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2018.03.002</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Branching Processes ; Economics and Finance ; Energy economics ; Energy markets ; Estimation ; Fields (mathematics) ; Graphical representations ; Humanities and Social Sciences ; Markets ; Mathematics ; Parameter estimation ; Power ; Prices ; Pricing ; Property ; Random Fields ; Risk behavior ; Risk premium term structure ; Risk taking ; Self-exciting structures</subject><ispartof>Energy economics, 2019-03, Vol.79, p.144-156</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-90f4519e1a6bd0c036ea99fab433a519ddad020e96eab065ca6fe36448c68f173</citedby><cites>FETCH-LOGICAL-c541t-90f4519e1a6bd0c036ea99fab433a519ddad020e96eab065ca6fe36448c68f173</cites><orcidid>0000-0003-4365-6539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eneco.2018.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27866,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02954986$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Ying</creatorcontrib><creatorcontrib>Ma, Chunhua</creatorcontrib><creatorcontrib>Scotti, Simone</creatorcontrib><creatorcontrib>Sgarra, Carlo</creatorcontrib><title>A branching process approach to power markets</title><title>Energy economics</title><description>We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach was already exploited by Barndorff-Nielsen et al., who adopted the Ambit Field framework for describing the power price dynamics. The novelty contained in our approach consists of combining the basic features of both Branching Processes and Random Fields in order to get a realistic and parsimonious model setting. We shall provide some closed-form evaluation formulae for forward contracts. We discuss the risk premium behavior, by pointing out that in the present framework, a very realistic description arises. We outline a possible methodology for parameters estimation. We illustrate by graphical representation the main achievements of this approach. •A new model for power prices including the jumps clustering features•Some explicit valuation formulas for the basic derivatives contracts in the modeling framework proposed•A risk premium analysis for the model introduced with a comparison with previous models•A statistical analysis supporting the modeling approach proposed</description><subject>Branching Processes</subject><subject>Economics and Finance</subject><subject>Energy economics</subject><subject>Energy markets</subject><subject>Estimation</subject><subject>Fields (mathematics)</subject><subject>Graphical representations</subject><subject>Humanities and Social Sciences</subject><subject>Markets</subject><subject>Mathematics</subject><subject>Parameter estimation</subject><subject>Power</subject><subject>Prices</subject><subject>Pricing</subject><subject>Property</subject><subject>Random Fields</subject><subject>Risk behavior</subject><subject>Risk premium term structure</subject><subject>Risk taking</subject><subject>Self-exciting structures</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9ULFOwzAQtRBIlMIXsERiYkg424lrDwxVBRSpEgvMluNcaEKJg50W8fc4BDEy3enuvXfvHiGXFDIKVNy0GXZoXcaAygx4BsCOyIzKBU8FlfSYzIDmkCop-Sk5C6EFgEIUckbSZVJ609lt070mvXcWQ0hMHztjt8ngkt59ok_ejX_DIZyTk9rsAl781jl5ub97Xq3TzdPD42q5SW2R0yFVUOcFVUiNKCuwwAUapWpT5pybuKgqUwEDVHFegiisETVykefSClnTBZ-T60l3a3a69008_6WdafR6udHjDJgqciXFgUbs1YSNnj_2GAbdur3voj3NmOQcpBIsoviEst6F4LH-k6Wgxwx1q38y1GOGGriOGUbW7cTC-OyhQa-DbbCzWDUe7aAr1_zL_wbC2Xkk</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Jiao, Ying</creator><creator>Ma, Chunhua</creator><creator>Scotti, Simone</creator><creator>Sgarra, Carlo</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0003-4365-6539</orcidid></search><sort><creationdate>20190301</creationdate><title>A branching process approach to power markets</title><author>Jiao, Ying ; Ma, Chunhua ; Scotti, Simone ; Sgarra, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-90f4519e1a6bd0c036ea99fab433a519ddad020e96eab065ca6fe36448c68f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Branching Processes</topic><topic>Economics and Finance</topic><topic>Energy economics</topic><topic>Energy markets</topic><topic>Estimation</topic><topic>Fields (mathematics)</topic><topic>Graphical representations</topic><topic>Humanities and Social Sciences</topic><topic>Markets</topic><topic>Mathematics</topic><topic>Parameter estimation</topic><topic>Power</topic><topic>Prices</topic><topic>Pricing</topic><topic>Property</topic><topic>Random Fields</topic><topic>Risk behavior</topic><topic>Risk premium term structure</topic><topic>Risk taking</topic><topic>Self-exciting structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Ying</creatorcontrib><creatorcontrib>Ma, Chunhua</creatorcontrib><creatorcontrib>Scotti, Simone</creatorcontrib><creatorcontrib>Sgarra, Carlo</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Ying</au><au>Ma, Chunhua</au><au>Scotti, Simone</au><au>Sgarra, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A branching process approach to power markets</atitle><jtitle>Energy economics</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>79</volume><spage>144</spage><epage>156</epage><pages>144-156</pages><issn>0140-9883</issn><eissn>1873-6181</eissn><abstract>We propose and investigate a market model for power prices, including most basic features exhibited by previous models and taking into account self-exciting properties. The model proposed extends Hawkes-type models by introducing a twofold integral representation property. A Random Field approach was already exploited by Barndorff-Nielsen et al., who adopted the Ambit Field framework for describing the power price dynamics. The novelty contained in our approach consists of combining the basic features of both Branching Processes and Random Fields in order to get a realistic and parsimonious model setting. We shall provide some closed-form evaluation formulae for forward contracts. We discuss the risk premium behavior, by pointing out that in the present framework, a very realistic description arises. We outline a possible methodology for parameters estimation. We illustrate by graphical representation the main achievements of this approach. •A new model for power prices including the jumps clustering features•Some explicit valuation formulas for the basic derivatives contracts in the modeling framework proposed•A risk premium analysis for the model introduced with a comparison with previous models•A statistical analysis supporting the modeling approach proposed</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2018.03.002</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4365-6539</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-9883
ispartof Energy economics, 2019-03, Vol.79, p.144-156
issn 0140-9883
1873-6181
language eng
recordid cdi_hal_primary_oai_HAL_hal_02954986v1
source PAIS Index; ScienceDirect Journals (5 years ago - present)
subjects Branching Processes
Economics and Finance
Energy economics
Energy markets
Estimation
Fields (mathematics)
Graphical representations
Humanities and Social Sciences
Markets
Mathematics
Parameter estimation
Power
Prices
Pricing
Property
Random Fields
Risk behavior
Risk premium term structure
Risk taking
Self-exciting structures
title A branching process approach to power markets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20branching%20process%20approach%20to%20power%20markets&rft.jtitle=Energy%20economics&rft.au=Jiao,%20Ying&rft.date=2019-03-01&rft.volume=79&rft.spage=144&rft.epage=156&rft.pages=144-156&rft.issn=0140-9883&rft.eissn=1873-6181&rft_id=info:doi/10.1016/j.eneco.2018.03.002&rft_dat=%3Cproquest_hal_p%3E2283308962%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283308962&rft_id=info:pmid/&rft_els_id=S0140988318300811&rfr_iscdi=true