The estimation of absorbed dose rates for non-human biota: an extended intercomparison

An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation and environmental biophysics 2011-05, Vol.50 (2), p.231-251
Hauptverfasser: Vives i Batlle, J., Beaugelin-Seiller, K., Beresford, N. A., Copplestone, D., Horyna, J., Hosseini, A., Johansen, M., Kamboj, S., Keum, D.-K., Kurosawa, N., Newsome, L., Olyslaegers, G., Vandenhove, H., Ryufuku, S., Vives Lynch, S., Wood, M. D., Yu, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 2
container_start_page 231
container_title Radiation and environmental biophysics
container_volume 50
creator Vives i Batlle, J.
Beaugelin-Seiller, K.
Beresford, N. A.
Copplestone, D.
Horyna, J.
Hosseini, A.
Johansen, M.
Kamboj, S.
Keum, D.-K.
Kurosawa, N.
Newsome, L.
Olyslaegers, G.
Vandenhove, H.
Ryufuku, S.
Vives Lynch, S.
Wood, M. D.
Yu, C.
description An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.
doi_str_mv 10.1007/s00411-010-0346-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02954957v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1673385723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-9727569660e1a7281ee712e8e94c9679720db952ea7f16a01aa0af191751d7323</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS1ERZfCD-CCIk5wcJmxYzvmVlVAkVbiUhA3y0kmbKqNvdgJav99vUopEhKnsWa-eeOnx9grhHMEMO8zQI3IAYGDrDVXT9gGaym4AGufsg1IQK5l_eOUPc_5BgCN1vYZOxWIKDXYDft-vaOK8jxOfh5jqOJQ-TbH1FJf9TFTlfxMuRpiqkIMfLdMPlTtGGf_oSovup0p9IUdw0ypi9PBpzHH8IKdDH6f6eVDPWPfPn28vrzi26-fv1xebHmnQM7cGmGUtloDoTeiQSKDghqydWe1KWPoW6sEeTOg9oDegx_QolHYGynkGXu36u783h1ScZHuXPSju7rYumMPhFW1VeY3Fvbtyh5S_LUUz24ac0f7vQ8Ul-xQGykbZYQs6Jt_0Ju4pFCcuEYLjbKBI4Qr1KWYc6Lh8QMI7piPW_NxJR93zMepsvP6QXhpJ-ofN_4EUgCxArmMwk9Kfy__X_UeI0eYCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862613803</pqid></control><display><type>article</type><title>The estimation of absorbed dose rates for non-human biota: an extended intercomparison</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Vives i Batlle, J. ; Beaugelin-Seiller, K. ; Beresford, N. A. ; Copplestone, D. ; Horyna, J. ; Hosseini, A. ; Johansen, M. ; Kamboj, S. ; Keum, D.-K. ; Kurosawa, N. ; Newsome, L. ; Olyslaegers, G. ; Vandenhove, H. ; Ryufuku, S. ; Vives Lynch, S. ; Wood, M. D. ; Yu, C.</creator><creatorcontrib>Vives i Batlle, J. ; Beaugelin-Seiller, K. ; Beresford, N. A. ; Copplestone, D. ; Horyna, J. ; Hosseini, A. ; Johansen, M. ; Kamboj, S. ; Keum, D.-K. ; Kurosawa, N. ; Newsome, L. ; Olyslaegers, G. ; Vandenhove, H. ; Ryufuku, S. ; Vives Lynch, S. ; Wood, M. D. ; Yu, C.</creatorcontrib><description>An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.</description><identifier>ISSN: 0301-634X</identifier><identifier>EISSN: 1432-2099</identifier><identifier>DOI: 10.1007/s00411-010-0346-5</identifier><identifier>PMID: 21113609</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Absorption ; Animals ; Anura ; Aquatic birds ; Biodiversity ; Biological and Medical Physics ; Biophysics ; Biosphere ; Biota ; Body Burden ; Computer Simulation ; Dispersal ; Dosimetry ; Ducks - metabolism ; Ecosystems ; Effects of Radiation/Radiation Protection ; Environmental Physics ; Flatfishes - metabolism ; Life Sciences ; Models, Biological ; Monitoring/Environmental Analysis ; Oligochaeta - metabolism ; Original Paper ; Physics ; Physics and Astronomy ; Radiation ; Radiation Dosage ; Radioisotopes ; Radioisotopes - analysis ; Radioisotopes - pharmacokinetics ; Radiometry - methods ; Rats - metabolism ; Relative Biological Effectiveness ; Species Specificity</subject><ispartof>Radiation and environmental biophysics, 2011-05, Vol.50 (2), p.231-251</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-9727569660e1a7281ee712e8e94c9679720db952ea7f16a01aa0af191751d7323</citedby><cites>FETCH-LOGICAL-c503t-9727569660e1a7281ee712e8e94c9679720db952ea7f16a01aa0af191751d7323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00411-010-0346-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00411-010-0346-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21113609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02954957$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vives i Batlle, J.</creatorcontrib><creatorcontrib>Beaugelin-Seiller, K.</creatorcontrib><creatorcontrib>Beresford, N. A.</creatorcontrib><creatorcontrib>Copplestone, D.</creatorcontrib><creatorcontrib>Horyna, J.</creatorcontrib><creatorcontrib>Hosseini, A.</creatorcontrib><creatorcontrib>Johansen, M.</creatorcontrib><creatorcontrib>Kamboj, S.</creatorcontrib><creatorcontrib>Keum, D.-K.</creatorcontrib><creatorcontrib>Kurosawa, N.</creatorcontrib><creatorcontrib>Newsome, L.</creatorcontrib><creatorcontrib>Olyslaegers, G.</creatorcontrib><creatorcontrib>Vandenhove, H.</creatorcontrib><creatorcontrib>Ryufuku, S.</creatorcontrib><creatorcontrib>Vives Lynch, S.</creatorcontrib><creatorcontrib>Wood, M. D.</creatorcontrib><creatorcontrib>Yu, C.</creatorcontrib><title>The estimation of absorbed dose rates for non-human biota: an extended intercomparison</title><title>Radiation and environmental biophysics</title><addtitle>Radiat Environ Biophys</addtitle><addtitle>Radiat Environ Biophys</addtitle><description>An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.</description><subject>Absorption</subject><subject>Animals</subject><subject>Anura</subject><subject>Aquatic birds</subject><subject>Biodiversity</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biosphere</subject><subject>Biota</subject><subject>Body Burden</subject><subject>Computer Simulation</subject><subject>Dispersal</subject><subject>Dosimetry</subject><subject>Ducks - metabolism</subject><subject>Ecosystems</subject><subject>Effects of Radiation/Radiation Protection</subject><subject>Environmental Physics</subject><subject>Flatfishes - metabolism</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Monitoring/Environmental Analysis</subject><subject>Oligochaeta - metabolism</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Radiation Dosage</subject><subject>Radioisotopes</subject><subject>Radioisotopes - analysis</subject><subject>Radioisotopes - pharmacokinetics</subject><subject>Radiometry - methods</subject><subject>Rats - metabolism</subject><subject>Relative Biological Effectiveness</subject><subject>Species Specificity</subject><issn>0301-634X</issn><issn>1432-2099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFv1DAQhS1ERZfCD-CCIk5wcJmxYzvmVlVAkVbiUhA3y0kmbKqNvdgJav99vUopEhKnsWa-eeOnx9grhHMEMO8zQI3IAYGDrDVXT9gGaym4AGufsg1IQK5l_eOUPc_5BgCN1vYZOxWIKDXYDft-vaOK8jxOfh5jqOJQ-TbH1FJf9TFTlfxMuRpiqkIMfLdMPlTtGGf_oSovup0p9IUdw0ypi9PBpzHH8IKdDH6f6eVDPWPfPn28vrzi26-fv1xebHmnQM7cGmGUtloDoTeiQSKDghqydWe1KWPoW6sEeTOg9oDegx_QolHYGynkGXu36u783h1ScZHuXPSju7rYumMPhFW1VeY3Fvbtyh5S_LUUz24ac0f7vQ8Ul-xQGykbZYQs6Jt_0Ju4pFCcuEYLjbKBI4Qr1KWYc6Lh8QMI7piPW_NxJR93zMepsvP6QXhpJ-ofN_4EUgCxArmMwk9Kfy__X_UeI0eYCw</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Vives i Batlle, J.</creator><creator>Beaugelin-Seiller, K.</creator><creator>Beresford, N. A.</creator><creator>Copplestone, D.</creator><creator>Horyna, J.</creator><creator>Hosseini, A.</creator><creator>Johansen, M.</creator><creator>Kamboj, S.</creator><creator>Keum, D.-K.</creator><creator>Kurosawa, N.</creator><creator>Newsome, L.</creator><creator>Olyslaegers, G.</creator><creator>Vandenhove, H.</creator><creator>Ryufuku, S.</creator><creator>Vives Lynch, S.</creator><creator>Wood, M. D.</creator><creator>Yu, C.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope></search><sort><creationdate>20110501</creationdate><title>The estimation of absorbed dose rates for non-human biota: an extended intercomparison</title><author>Vives i Batlle, J. ; Beaugelin-Seiller, K. ; Beresford, N. A. ; Copplestone, D. ; Horyna, J. ; Hosseini, A. ; Johansen, M. ; Kamboj, S. ; Keum, D.-K. ; Kurosawa, N. ; Newsome, L. ; Olyslaegers, G. ; Vandenhove, H. ; Ryufuku, S. ; Vives Lynch, S. ; Wood, M. D. ; Yu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-9727569660e1a7281ee712e8e94c9679720db952ea7f16a01aa0af191751d7323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Anura</topic><topic>Aquatic birds</topic><topic>Biodiversity</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biosphere</topic><topic>Biota</topic><topic>Body Burden</topic><topic>Computer Simulation</topic><topic>Dispersal</topic><topic>Dosimetry</topic><topic>Ducks - metabolism</topic><topic>Ecosystems</topic><topic>Effects of Radiation/Radiation Protection</topic><topic>Environmental Physics</topic><topic>Flatfishes - metabolism</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Monitoring/Environmental Analysis</topic><topic>Oligochaeta - metabolism</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Radiation Dosage</topic><topic>Radioisotopes</topic><topic>Radioisotopes - analysis</topic><topic>Radioisotopes - pharmacokinetics</topic><topic>Radiometry - methods</topic><topic>Rats - metabolism</topic><topic>Relative Biological Effectiveness</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vives i Batlle, J.</creatorcontrib><creatorcontrib>Beaugelin-Seiller, K.</creatorcontrib><creatorcontrib>Beresford, N. A.</creatorcontrib><creatorcontrib>Copplestone, D.</creatorcontrib><creatorcontrib>Horyna, J.</creatorcontrib><creatorcontrib>Hosseini, A.</creatorcontrib><creatorcontrib>Johansen, M.</creatorcontrib><creatorcontrib>Kamboj, S.</creatorcontrib><creatorcontrib>Keum, D.-K.</creatorcontrib><creatorcontrib>Kurosawa, N.</creatorcontrib><creatorcontrib>Newsome, L.</creatorcontrib><creatorcontrib>Olyslaegers, G.</creatorcontrib><creatorcontrib>Vandenhove, H.</creatorcontrib><creatorcontrib>Ryufuku, S.</creatorcontrib><creatorcontrib>Vives Lynch, S.</creatorcontrib><creatorcontrib>Wood, M. D.</creatorcontrib><creatorcontrib>Yu, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Radiation and environmental biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vives i Batlle, J.</au><au>Beaugelin-Seiller, K.</au><au>Beresford, N. A.</au><au>Copplestone, D.</au><au>Horyna, J.</au><au>Hosseini, A.</au><au>Johansen, M.</au><au>Kamboj, S.</au><au>Keum, D.-K.</au><au>Kurosawa, N.</au><au>Newsome, L.</au><au>Olyslaegers, G.</au><au>Vandenhove, H.</au><au>Ryufuku, S.</au><au>Vives Lynch, S.</au><au>Wood, M. D.</au><au>Yu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The estimation of absorbed dose rates for non-human biota: an extended intercomparison</atitle><jtitle>Radiation and environmental biophysics</jtitle><stitle>Radiat Environ Biophys</stitle><addtitle>Radiat Environ Biophys</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>50</volume><issue>2</issue><spage>231</spage><epage>251</epage><pages>231-251</pages><issn>0301-634X</issn><eissn>1432-2099</eissn><abstract>An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21113609</pmid><doi>10.1007/s00411-010-0346-5</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-634X
ispartof Radiation and environmental biophysics, 2011-05, Vol.50 (2), p.231-251
issn 0301-634X
1432-2099
language eng
recordid cdi_hal_primary_oai_HAL_hal_02954957v1
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Absorption
Animals
Anura
Aquatic birds
Biodiversity
Biological and Medical Physics
Biophysics
Biosphere
Biota
Body Burden
Computer Simulation
Dispersal
Dosimetry
Ducks - metabolism
Ecosystems
Effects of Radiation/Radiation Protection
Environmental Physics
Flatfishes - metabolism
Life Sciences
Models, Biological
Monitoring/Environmental Analysis
Oligochaeta - metabolism
Original Paper
Physics
Physics and Astronomy
Radiation
Radiation Dosage
Radioisotopes
Radioisotopes - analysis
Radioisotopes - pharmacokinetics
Radiometry - methods
Rats - metabolism
Relative Biological Effectiveness
Species Specificity
title The estimation of absorbed dose rates for non-human biota: an extended intercomparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20estimation%20of%20absorbed%20dose%20rates%20for%20non-human%20biota:%20an%20extended%20intercomparison&rft.jtitle=Radiation%20and%20environmental%20biophysics&rft.au=Vives%20i%20Batlle,%20J.&rft.date=2011-05-01&rft.volume=50&rft.issue=2&rft.spage=231&rft.epage=251&rft.pages=231-251&rft.issn=0301-634X&rft.eissn=1432-2099&rft_id=info:doi/10.1007/s00411-010-0346-5&rft_dat=%3Cproquest_hal_p%3E1673385723%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862613803&rft_id=info:pmid/21113609&rfr_iscdi=true