The estimation of absorbed dose rates for non-human biota: an extended intercomparison
An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range o...
Gespeichert in:
Veröffentlicht in: | Radiation and environmental biophysics 2011-05, Vol.50 (2), p.231-251 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 2 |
container_start_page | 231 |
container_title | Radiation and environmental biophysics |
container_volume | 50 |
creator | Vives i Batlle, J. Beaugelin-Seiller, K. Beresford, N. A. Copplestone, D. Horyna, J. Hosseini, A. Johansen, M. Kamboj, S. Keum, D.-K. Kurosawa, N. Newsome, L. Olyslaegers, G. Vandenhove, H. Ryufuku, S. Vives Lynch, S. Wood, M. D. Yu, C. |
description | An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota. |
doi_str_mv | 10.1007/s00411-010-0346-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02954957v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1673385723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-9727569660e1a7281ee712e8e94c9679720db952ea7f16a01aa0af191751d7323</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS1ERZfCD-CCIk5wcJmxYzvmVlVAkVbiUhA3y0kmbKqNvdgJav99vUopEhKnsWa-eeOnx9grhHMEMO8zQI3IAYGDrDVXT9gGaym4AGufsg1IQK5l_eOUPc_5BgCN1vYZOxWIKDXYDft-vaOK8jxOfh5jqOJQ-TbH1FJf9TFTlfxMuRpiqkIMfLdMPlTtGGf_oSovup0p9IUdw0ypi9PBpzHH8IKdDH6f6eVDPWPfPn28vrzi26-fv1xebHmnQM7cGmGUtloDoTeiQSKDghqydWe1KWPoW6sEeTOg9oDegx_QolHYGynkGXu36u783h1ScZHuXPSju7rYumMPhFW1VeY3Fvbtyh5S_LUUz24ac0f7vQ8Ul-xQGykbZYQs6Jt_0Ju4pFCcuEYLjbKBI4Qr1KWYc6Lh8QMI7piPW_NxJR93zMepsvP6QXhpJ-ofN_4EUgCxArmMwk9Kfy__X_UeI0eYCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862613803</pqid></control><display><type>article</type><title>The estimation of absorbed dose rates for non-human biota: an extended intercomparison</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Vives i Batlle, J. ; Beaugelin-Seiller, K. ; Beresford, N. A. ; Copplestone, D. ; Horyna, J. ; Hosseini, A. ; Johansen, M. ; Kamboj, S. ; Keum, D.-K. ; Kurosawa, N. ; Newsome, L. ; Olyslaegers, G. ; Vandenhove, H. ; Ryufuku, S. ; Vives Lynch, S. ; Wood, M. D. ; Yu, C.</creator><creatorcontrib>Vives i Batlle, J. ; Beaugelin-Seiller, K. ; Beresford, N. A. ; Copplestone, D. ; Horyna, J. ; Hosseini, A. ; Johansen, M. ; Kamboj, S. ; Keum, D.-K. ; Kurosawa, N. ; Newsome, L. ; Olyslaegers, G. ; Vandenhove, H. ; Ryufuku, S. ; Vives Lynch, S. ; Wood, M. D. ; Yu, C.</creatorcontrib><description>An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.</description><identifier>ISSN: 0301-634X</identifier><identifier>EISSN: 1432-2099</identifier><identifier>DOI: 10.1007/s00411-010-0346-5</identifier><identifier>PMID: 21113609</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Absorption ; Animals ; Anura ; Aquatic birds ; Biodiversity ; Biological and Medical Physics ; Biophysics ; Biosphere ; Biota ; Body Burden ; Computer Simulation ; Dispersal ; Dosimetry ; Ducks - metabolism ; Ecosystems ; Effects of Radiation/Radiation Protection ; Environmental Physics ; Flatfishes - metabolism ; Life Sciences ; Models, Biological ; Monitoring/Environmental Analysis ; Oligochaeta - metabolism ; Original Paper ; Physics ; Physics and Astronomy ; Radiation ; Radiation Dosage ; Radioisotopes ; Radioisotopes - analysis ; Radioisotopes - pharmacokinetics ; Radiometry - methods ; Rats - metabolism ; Relative Biological Effectiveness ; Species Specificity</subject><ispartof>Radiation and environmental biophysics, 2011-05, Vol.50 (2), p.231-251</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-9727569660e1a7281ee712e8e94c9679720db952ea7f16a01aa0af191751d7323</citedby><cites>FETCH-LOGICAL-c503t-9727569660e1a7281ee712e8e94c9679720db952ea7f16a01aa0af191751d7323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00411-010-0346-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00411-010-0346-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21113609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02954957$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vives i Batlle, J.</creatorcontrib><creatorcontrib>Beaugelin-Seiller, K.</creatorcontrib><creatorcontrib>Beresford, N. A.</creatorcontrib><creatorcontrib>Copplestone, D.</creatorcontrib><creatorcontrib>Horyna, J.</creatorcontrib><creatorcontrib>Hosseini, A.</creatorcontrib><creatorcontrib>Johansen, M.</creatorcontrib><creatorcontrib>Kamboj, S.</creatorcontrib><creatorcontrib>Keum, D.-K.</creatorcontrib><creatorcontrib>Kurosawa, N.</creatorcontrib><creatorcontrib>Newsome, L.</creatorcontrib><creatorcontrib>Olyslaegers, G.</creatorcontrib><creatorcontrib>Vandenhove, H.</creatorcontrib><creatorcontrib>Ryufuku, S.</creatorcontrib><creatorcontrib>Vives Lynch, S.</creatorcontrib><creatorcontrib>Wood, M. D.</creatorcontrib><creatorcontrib>Yu, C.</creatorcontrib><title>The estimation of absorbed dose rates for non-human biota: an extended intercomparison</title><title>Radiation and environmental biophysics</title><addtitle>Radiat Environ Biophys</addtitle><addtitle>Radiat Environ Biophys</addtitle><description>An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.</description><subject>Absorption</subject><subject>Animals</subject><subject>Anura</subject><subject>Aquatic birds</subject><subject>Biodiversity</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biosphere</subject><subject>Biota</subject><subject>Body Burden</subject><subject>Computer Simulation</subject><subject>Dispersal</subject><subject>Dosimetry</subject><subject>Ducks - metabolism</subject><subject>Ecosystems</subject><subject>Effects of Radiation/Radiation Protection</subject><subject>Environmental Physics</subject><subject>Flatfishes - metabolism</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Monitoring/Environmental Analysis</subject><subject>Oligochaeta - metabolism</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Radiation Dosage</subject><subject>Radioisotopes</subject><subject>Radioisotopes - analysis</subject><subject>Radioisotopes - pharmacokinetics</subject><subject>Radiometry - methods</subject><subject>Rats - metabolism</subject><subject>Relative Biological Effectiveness</subject><subject>Species Specificity</subject><issn>0301-634X</issn><issn>1432-2099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFv1DAQhS1ERZfCD-CCIk5wcJmxYzvmVlVAkVbiUhA3y0kmbKqNvdgJav99vUopEhKnsWa-eeOnx9grhHMEMO8zQI3IAYGDrDVXT9gGaym4AGufsg1IQK5l_eOUPc_5BgCN1vYZOxWIKDXYDft-vaOK8jxOfh5jqOJQ-TbH1FJf9TFTlfxMuRpiqkIMfLdMPlTtGGf_oSovup0p9IUdw0ypi9PBpzHH8IKdDH6f6eVDPWPfPn28vrzi26-fv1xebHmnQM7cGmGUtloDoTeiQSKDghqydWe1KWPoW6sEeTOg9oDegx_QolHYGynkGXu36u783h1ScZHuXPSju7rYumMPhFW1VeY3Fvbtyh5S_LUUz24ac0f7vQ8Ul-xQGykbZYQs6Jt_0Ju4pFCcuEYLjbKBI4Qr1KWYc6Lh8QMI7piPW_NxJR93zMepsvP6QXhpJ-ofN_4EUgCxArmMwk9Kfy__X_UeI0eYCw</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Vives i Batlle, J.</creator><creator>Beaugelin-Seiller, K.</creator><creator>Beresford, N. A.</creator><creator>Copplestone, D.</creator><creator>Horyna, J.</creator><creator>Hosseini, A.</creator><creator>Johansen, M.</creator><creator>Kamboj, S.</creator><creator>Keum, D.-K.</creator><creator>Kurosawa, N.</creator><creator>Newsome, L.</creator><creator>Olyslaegers, G.</creator><creator>Vandenhove, H.</creator><creator>Ryufuku, S.</creator><creator>Vives Lynch, S.</creator><creator>Wood, M. D.</creator><creator>Yu, C.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope></search><sort><creationdate>20110501</creationdate><title>The estimation of absorbed dose rates for non-human biota: an extended intercomparison</title><author>Vives i Batlle, J. ; Beaugelin-Seiller, K. ; Beresford, N. A. ; Copplestone, D. ; Horyna, J. ; Hosseini, A. ; Johansen, M. ; Kamboj, S. ; Keum, D.-K. ; Kurosawa, N. ; Newsome, L. ; Olyslaegers, G. ; Vandenhove, H. ; Ryufuku, S. ; Vives Lynch, S. ; Wood, M. D. ; Yu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-9727569660e1a7281ee712e8e94c9679720db952ea7f16a01aa0af191751d7323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Anura</topic><topic>Aquatic birds</topic><topic>Biodiversity</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biosphere</topic><topic>Biota</topic><topic>Body Burden</topic><topic>Computer Simulation</topic><topic>Dispersal</topic><topic>Dosimetry</topic><topic>Ducks - metabolism</topic><topic>Ecosystems</topic><topic>Effects of Radiation/Radiation Protection</topic><topic>Environmental Physics</topic><topic>Flatfishes - metabolism</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Monitoring/Environmental Analysis</topic><topic>Oligochaeta - metabolism</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Radiation Dosage</topic><topic>Radioisotopes</topic><topic>Radioisotopes - analysis</topic><topic>Radioisotopes - pharmacokinetics</topic><topic>Radiometry - methods</topic><topic>Rats - metabolism</topic><topic>Relative Biological Effectiveness</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vives i Batlle, J.</creatorcontrib><creatorcontrib>Beaugelin-Seiller, K.</creatorcontrib><creatorcontrib>Beresford, N. A.</creatorcontrib><creatorcontrib>Copplestone, D.</creatorcontrib><creatorcontrib>Horyna, J.</creatorcontrib><creatorcontrib>Hosseini, A.</creatorcontrib><creatorcontrib>Johansen, M.</creatorcontrib><creatorcontrib>Kamboj, S.</creatorcontrib><creatorcontrib>Keum, D.-K.</creatorcontrib><creatorcontrib>Kurosawa, N.</creatorcontrib><creatorcontrib>Newsome, L.</creatorcontrib><creatorcontrib>Olyslaegers, G.</creatorcontrib><creatorcontrib>Vandenhove, H.</creatorcontrib><creatorcontrib>Ryufuku, S.</creatorcontrib><creatorcontrib>Vives Lynch, S.</creatorcontrib><creatorcontrib>Wood, M. D.</creatorcontrib><creatorcontrib>Yu, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Radiation and environmental biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vives i Batlle, J.</au><au>Beaugelin-Seiller, K.</au><au>Beresford, N. A.</au><au>Copplestone, D.</au><au>Horyna, J.</au><au>Hosseini, A.</au><au>Johansen, M.</au><au>Kamboj, S.</au><au>Keum, D.-K.</au><au>Kurosawa, N.</au><au>Newsome, L.</au><au>Olyslaegers, G.</au><au>Vandenhove, H.</au><au>Ryufuku, S.</au><au>Vives Lynch, S.</au><au>Wood, M. D.</au><au>Yu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The estimation of absorbed dose rates for non-human biota: an extended intercomparison</atitle><jtitle>Radiation and environmental biophysics</jtitle><stitle>Radiat Environ Biophys</stitle><addtitle>Radiat Environ Biophys</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>50</volume><issue>2</issue><spage>231</spage><epage>251</epage><pages>231-251</pages><issn>0301-634X</issn><eissn>1432-2099</eissn><abstract>An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21113609</pmid><doi>10.1007/s00411-010-0346-5</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-634X |
ispartof | Radiation and environmental biophysics, 2011-05, Vol.50 (2), p.231-251 |
issn | 0301-634X 1432-2099 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02954957v1 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Absorption Animals Anura Aquatic birds Biodiversity Biological and Medical Physics Biophysics Biosphere Biota Body Burden Computer Simulation Dispersal Dosimetry Ducks - metabolism Ecosystems Effects of Radiation/Radiation Protection Environmental Physics Flatfishes - metabolism Life Sciences Models, Biological Monitoring/Environmental Analysis Oligochaeta - metabolism Original Paper Physics Physics and Astronomy Radiation Radiation Dosage Radioisotopes Radioisotopes - analysis Radioisotopes - pharmacokinetics Radiometry - methods Rats - metabolism Relative Biological Effectiveness Species Specificity |
title | The estimation of absorbed dose rates for non-human biota: an extended intercomparison |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20estimation%20of%20absorbed%20dose%20rates%20for%20non-human%20biota:%20an%20extended%20intercomparison&rft.jtitle=Radiation%20and%20environmental%20biophysics&rft.au=Vives%20i%20Batlle,%20J.&rft.date=2011-05-01&rft.volume=50&rft.issue=2&rft.spage=231&rft.epage=251&rft.pages=231-251&rft.issn=0301-634X&rft.eissn=1432-2099&rft_id=info:doi/10.1007/s00411-010-0346-5&rft_dat=%3Cproquest_hal_p%3E1673385723%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862613803&rft_id=info:pmid/21113609&rfr_iscdi=true |