Spectral Mesh Simplification

The spectrum of the Laplace‐Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques outp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2020-05, Vol.39 (2), p.315-324
Hauptverfasser: Lescoat, Thibault, Liu, Hsueh‐Ti Derek, Thiery, Jean‐Marc, Jacobson, Alec, Boubekeur, Tamy, Ovsjanikov, Maks
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 2
container_start_page 315
container_title Computer graphics forum
container_volume 39
creator Lescoat, Thibault
Liu, Hsueh‐Ti Derek
Thiery, Jean‐Marc
Jacobson, Alec
Boubekeur, Tamy
Ovsjanikov, Maks
description The spectrum of the Laplace‐Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques output a subset of input points with no connectivity, which limits their potential applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the selected points. Focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum‐preserving mesh decimation scheme, so that the Laplacian computed on the simplified mesh is spectrally close to the one of the input mesh. We illustrate the benefit of our approach for quickly approximating spectral distances and functional maps on low resolution proxies of potentially high resolution input meshes.
doi_str_mv 10.1111/cgf.13932
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02953334v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422961269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3662-936ab1f60c6c0a103d5c69dddd83614e1eacebd717d40b0ce2b0161aefa91ec03</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqEwsDNUYmJIe2cnTj1WFW2RghgKs-U4DnWVNsFOqfrvcQmCibfc6fTd09Mj5BZhhEFj_V6NkAlGz0iECc_iCU_FOYkAw55Bml6SK-83AJBkPI3I3ao1unOqHj4bvx6u7LatbWW16myzuyYXlaq9ufmZA_I2f3ydLeP8ZfE0m-axZpzTWDCuCqw4aK5BIbAy1VyUQRPGMTFolDZFmWFWJlCANrQIcVCZSgk0GtiAPPS-a1XL1tmtckfZKCuX01yebkBFyhhLPjGw9z3buuZjb3wnN83e7UI8SRNKBUfKxZ-jdo33zlS_tgjyVJQMRcnvogI77tmDrc3xf1DOFvP-4wtUgGdH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422961269</pqid></control><display><type>article</type><title>Spectral Mesh Simplification</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Lescoat, Thibault ; Liu, Hsueh‐Ti Derek ; Thiery, Jean‐Marc ; Jacobson, Alec ; Boubekeur, Tamy ; Ovsjanikov, Maks</creator><creatorcontrib>Lescoat, Thibault ; Liu, Hsueh‐Ti Derek ; Thiery, Jean‐Marc ; Jacobson, Alec ; Boubekeur, Tamy ; Ovsjanikov, Maks</creatorcontrib><description>The spectrum of the Laplace‐Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques output a subset of input points with no connectivity, which limits their potential applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the selected points. Focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum‐preserving mesh decimation scheme, so that the Laplacian computed on the simplified mesh is spectrally close to the one of the input mesh. We illustrate the benefit of our approach for quickly approximating spectral distances and functional maps on low resolution proxies of potentially high resolution input meshes.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.13932</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Approximation ; Computer Science ; Computer Vision and Pattern Recognition ; Eigenvectors ; Finite element method ; Optimization ; Spectra</subject><ispartof>Computer graphics forum, 2020-05, Vol.39 (2), p.315-324</ispartof><rights>2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2020 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3662-936ab1f60c6c0a103d5c69dddd83614e1eacebd717d40b0ce2b0161aefa91ec03</citedby><cites>FETCH-LOGICAL-c3662-936ab1f60c6c0a103d5c69dddd83614e1eacebd717d40b0ce2b0161aefa91ec03</cites><orcidid>0000-0001-5985-0921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.13932$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.13932$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02953334$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lescoat, Thibault</creatorcontrib><creatorcontrib>Liu, Hsueh‐Ti Derek</creatorcontrib><creatorcontrib>Thiery, Jean‐Marc</creatorcontrib><creatorcontrib>Jacobson, Alec</creatorcontrib><creatorcontrib>Boubekeur, Tamy</creatorcontrib><creatorcontrib>Ovsjanikov, Maks</creatorcontrib><title>Spectral Mesh Simplification</title><title>Computer graphics forum</title><description>The spectrum of the Laplace‐Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques output a subset of input points with no connectivity, which limits their potential applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the selected points. Focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum‐preserving mesh decimation scheme, so that the Laplacian computed on the simplified mesh is spectrally close to the one of the input mesh. We illustrate the benefit of our approach for quickly approximating spectral distances and functional maps on low resolution proxies of potentially high resolution input meshes.</description><subject>Approximation</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Eigenvectors</subject><subject>Finite element method</subject><subject>Optimization</subject><subject>Spectra</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqEwsDNUYmJIe2cnTj1WFW2RghgKs-U4DnWVNsFOqfrvcQmCibfc6fTd09Mj5BZhhEFj_V6NkAlGz0iECc_iCU_FOYkAw55Bml6SK-83AJBkPI3I3ao1unOqHj4bvx6u7LatbWW16myzuyYXlaq9ufmZA_I2f3ydLeP8ZfE0m-axZpzTWDCuCqw4aK5BIbAy1VyUQRPGMTFolDZFmWFWJlCANrQIcVCZSgk0GtiAPPS-a1XL1tmtckfZKCuX01yebkBFyhhLPjGw9z3buuZjb3wnN83e7UI8SRNKBUfKxZ-jdo33zlS_tgjyVJQMRcnvogI77tmDrc3xf1DOFvP-4wtUgGdH</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Lescoat, Thibault</creator><creator>Liu, Hsueh‐Ti Derek</creator><creator>Thiery, Jean‐Marc</creator><creator>Jacobson, Alec</creator><creator>Boubekeur, Tamy</creator><creator>Ovsjanikov, Maks</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5985-0921</orcidid></search><sort><creationdate>202005</creationdate><title>Spectral Mesh Simplification</title><author>Lescoat, Thibault ; Liu, Hsueh‐Ti Derek ; Thiery, Jean‐Marc ; Jacobson, Alec ; Boubekeur, Tamy ; Ovsjanikov, Maks</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3662-936ab1f60c6c0a103d5c69dddd83614e1eacebd717d40b0ce2b0161aefa91ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Eigenvectors</topic><topic>Finite element method</topic><topic>Optimization</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lescoat, Thibault</creatorcontrib><creatorcontrib>Liu, Hsueh‐Ti Derek</creatorcontrib><creatorcontrib>Thiery, Jean‐Marc</creatorcontrib><creatorcontrib>Jacobson, Alec</creatorcontrib><creatorcontrib>Boubekeur, Tamy</creatorcontrib><creatorcontrib>Ovsjanikov, Maks</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lescoat, Thibault</au><au>Liu, Hsueh‐Ti Derek</au><au>Thiery, Jean‐Marc</au><au>Jacobson, Alec</au><au>Boubekeur, Tamy</au><au>Ovsjanikov, Maks</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Mesh Simplification</atitle><jtitle>Computer graphics forum</jtitle><date>2020-05</date><risdate>2020</risdate><volume>39</volume><issue>2</issue><spage>315</spage><epage>324</epage><pages>315-324</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>The spectrum of the Laplace‐Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques output a subset of input points with no connectivity, which limits their potential applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the selected points. Focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum‐preserving mesh decimation scheme, so that the Laplacian computed on the simplified mesh is spectrally close to the one of the input mesh. We illustrate the benefit of our approach for quickly approximating spectral distances and functional maps on low resolution proxies of potentially high resolution input meshes.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.13932</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5985-0921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2020-05, Vol.39 (2), p.315-324
issn 0167-7055
1467-8659
language eng
recordid cdi_hal_primary_oai_HAL_hal_02953334v1
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Approximation
Computer Science
Computer Vision and Pattern Recognition
Eigenvectors
Finite element method
Optimization
Spectra
title Spectral Mesh Simplification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Mesh%20Simplification&rft.jtitle=Computer%20graphics%20forum&rft.au=Lescoat,%20Thibault&rft.date=2020-05&rft.volume=39&rft.issue=2&rft.spage=315&rft.epage=324&rft.pages=315-324&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.13932&rft_dat=%3Cproquest_hal_p%3E2422961269%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422961269&rft_id=info:pmid/&rfr_iscdi=true