Neuromorphic analog spiking-modulator for audio signal processing

While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analog integrated circuits and signal processing 2021, Vol.106 (1), p.261-276
Hauptverfasser: Ferreira, Pietro M., Nebhen, Jamel, Klisnick, Geoffroy, Benlarbi-Delai, Aziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 1
container_start_page 261
container_title Analog integrated circuits and signal processing
container_volume 106
creator Ferreira, Pietro M.
Nebhen, Jamel
Klisnick, Geoffroy
Benlarbi-Delai, Aziz
description While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions. While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored reducing the silicon area to 98.6 μ m 2 and the substrate leakage to a 1.95 fJ / spike efficiency. Post-layout simulation results are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing applications. The proposal demonstrates a 9 bits spiking-modulator resolution, a maximum of 8 fJ / conv efficiency, and a root–mean–square error of 0.63 mV RMS .
doi_str_mv 10.1007/s10470-020-01729-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02948290v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485017706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-33d6902285141126f379ad089c1b4a8ad8f4da2c58980445038dbb9df3a4f4f13</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOCJw_Rlz_bJMdStBWKXvQc0s1mm7pt1qQr-O3NsqI3D8ODx2-GYRC6JnBHAMR9IsAFYKBZRFCF2QmakFIwTJRQp2gCipaYAINzdJHSDgCo4DBB8-e6j2EfYrf1VWEOpg1NkTr_7g8N3gfbt-YYYuGyTG99KJJvMlR0MVR1Spm6RGfOtKm--rlT9Pb48LpY4fXL8mkxX-OKKXHEjNmZAkplSTghdOaYUMaCVBXZcCONlY5bQ6tSKgmcl8Ck3WyUdcxwxx1hU3Q75m5Nq7vo9yZ-6WC8Xs3XevgBVVxSBZ8DezOyueZHX6ej3oU-5t5JUy7LPJGAWaboSFUxpBRr9xtLQA-z6nHWnJw1zKpZNrHRlDJ8aOr4F_2P6xuXVXkL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485017706</pqid></control><display><type>article</type><title>Neuromorphic analog spiking-modulator for audio signal processing</title><source>SpringerNature Journals</source><creator>Ferreira, Pietro M. ; Nebhen, Jamel ; Klisnick, Geoffroy ; Benlarbi-Delai, Aziz</creator><creatorcontrib>Ferreira, Pietro M. ; Nebhen, Jamel ; Klisnick, Geoffroy ; Benlarbi-Delai, Aziz</creatorcontrib><description>While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions. While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored reducing the silicon area to 98.6 μ m 2 and the substrate leakage to a 1.95 fJ / spike efficiency. Post-layout simulation results are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing applications. The proposal demonstrates a 9 bits spiking-modulator resolution, a maximum of 8 fJ / conv efficiency, and a root–mean–square error of 0.63 mV RMS .</description><identifier>ISSN: 0925-1030</identifier><identifier>EISSN: 1573-1979</identifier><identifier>DOI: 10.1007/s10470-020-01729-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial vision ; Circuits ; Circuits and Systems ; CMOS ; Electrical Engineering ; Electronics ; Energy efficiency ; Engineering ; Engineering Sciences ; Micro and nanotechnologies ; Microelectronics ; Microprocessors ; Power management ; Signal processing ; Signal,Image and Speech Processing ; Silicon ; Spiking ; Substrates</subject><ispartof>Analog integrated circuits and signal processing, 2021, Vol.106 (1), p.261-276</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-33d6902285141126f379ad089c1b4a8ad8f4da2c58980445038dbb9df3a4f4f13</citedby><cites>FETCH-LOGICAL-c397t-33d6902285141126f379ad089c1b4a8ad8f4da2c58980445038dbb9df3a4f4f13</cites><orcidid>0000-0002-8610-3451 ; 0000-0003-4654-4735 ; 0000-0002-0038-9058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10470-020-01729-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10470-020-01729-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02948290$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, Pietro M.</creatorcontrib><creatorcontrib>Nebhen, Jamel</creatorcontrib><creatorcontrib>Klisnick, Geoffroy</creatorcontrib><creatorcontrib>Benlarbi-Delai, Aziz</creatorcontrib><title>Neuromorphic analog spiking-modulator for audio signal processing</title><title>Analog integrated circuits and signal processing</title><addtitle>Analog Integr Circ Sig Process</addtitle><description>While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions. While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored reducing the silicon area to 98.6 μ m 2 and the substrate leakage to a 1.95 fJ / spike efficiency. Post-layout simulation results are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing applications. The proposal demonstrates a 9 bits spiking-modulator resolution, a maximum of 8 fJ / conv efficiency, and a root–mean–square error of 0.63 mV RMS .</description><subject>Artificial vision</subject><subject>Circuits</subject><subject>Circuits and Systems</subject><subject>CMOS</subject><subject>Electrical Engineering</subject><subject>Electronics</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Microprocessors</subject><subject>Power management</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Silicon</subject><subject>Spiking</subject><subject>Substrates</subject><issn>0925-1030</issn><issn>1573-1979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNOCJw_Rlz_bJMdStBWKXvQc0s1mm7pt1qQr-O3NsqI3D8ODx2-GYRC6JnBHAMR9IsAFYKBZRFCF2QmakFIwTJRQp2gCipaYAINzdJHSDgCo4DBB8-e6j2EfYrf1VWEOpg1NkTr_7g8N3gfbt-YYYuGyTG99KJJvMlR0MVR1Spm6RGfOtKm--rlT9Pb48LpY4fXL8mkxX-OKKXHEjNmZAkplSTghdOaYUMaCVBXZcCONlY5bQ6tSKgmcl8Ck3WyUdcxwxx1hU3Q75m5Nq7vo9yZ-6WC8Xs3XevgBVVxSBZ8DezOyueZHX6ej3oU-5t5JUy7LPJGAWaboSFUxpBRr9xtLQA-z6nHWnJw1zKpZNrHRlDJ8aOr4F_2P6xuXVXkL</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ferreira, Pietro M.</creator><creator>Nebhen, Jamel</creator><creator>Klisnick, Geoffroy</creator><creator>Benlarbi-Delai, Aziz</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TG</scope><scope>8FD</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8610-3451</orcidid><orcidid>https://orcid.org/0000-0003-4654-4735</orcidid><orcidid>https://orcid.org/0000-0002-0038-9058</orcidid></search><sort><creationdate>2021</creationdate><title>Neuromorphic analog spiking-modulator for audio signal processing</title><author>Ferreira, Pietro M. ; Nebhen, Jamel ; Klisnick, Geoffroy ; Benlarbi-Delai, Aziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-33d6902285141126f379ad089c1b4a8ad8f4da2c58980445038dbb9df3a4f4f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial vision</topic><topic>Circuits</topic><topic>Circuits and Systems</topic><topic>CMOS</topic><topic>Electrical Engineering</topic><topic>Electronics</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Microprocessors</topic><topic>Power management</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Silicon</topic><topic>Spiking</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Pietro M.</creatorcontrib><creatorcontrib>Nebhen, Jamel</creatorcontrib><creatorcontrib>Klisnick, Geoffroy</creatorcontrib><creatorcontrib>Benlarbi-Delai, Aziz</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Analog integrated circuits and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Pietro M.</au><au>Nebhen, Jamel</au><au>Klisnick, Geoffroy</au><au>Benlarbi-Delai, Aziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromorphic analog spiking-modulator for audio signal processing</atitle><jtitle>Analog integrated circuits and signal processing</jtitle><stitle>Analog Integr Circ Sig Process</stitle><date>2021</date><risdate>2021</risdate><volume>106</volume><issue>1</issue><spage>261</spage><epage>276</epage><pages>261-276</pages><issn>0925-1030</issn><eissn>1573-1979</eissn><abstract>While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions. While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored reducing the silicon area to 98.6 μ m 2 and the substrate leakage to a 1.95 fJ / spike efficiency. Post-layout simulation results are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing applications. The proposal demonstrates a 9 bits spiking-modulator resolution, a maximum of 8 fJ / conv efficiency, and a root–mean–square error of 0.63 mV RMS .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10470-020-01729-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8610-3451</orcidid><orcidid>https://orcid.org/0000-0003-4654-4735</orcidid><orcidid>https://orcid.org/0000-0002-0038-9058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-1030
ispartof Analog integrated circuits and signal processing, 2021, Vol.106 (1), p.261-276
issn 0925-1030
1573-1979
language eng
recordid cdi_hal_primary_oai_HAL_hal_02948290v1
source SpringerNature Journals
subjects Artificial vision
Circuits
Circuits and Systems
CMOS
Electrical Engineering
Electronics
Energy efficiency
Engineering
Engineering Sciences
Micro and nanotechnologies
Microelectronics
Microprocessors
Power management
Signal processing
Signal,Image and Speech Processing
Silicon
Spiking
Substrates
title Neuromorphic analog spiking-modulator for audio signal processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromorphic%20analog%20spiking-modulator%20for%20audio%20signal%20processing&rft.jtitle=Analog%20integrated%20circuits%20and%20signal%20processing&rft.au=Ferreira,%20Pietro%20M.&rft.date=2021&rft.volume=106&rft.issue=1&rft.spage=261&rft.epage=276&rft.pages=261-276&rft.issn=0925-1030&rft.eissn=1573-1979&rft_id=info:doi/10.1007/s10470-020-01729-3&rft_dat=%3Cproquest_hal_p%3E2485017706%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485017706&rft_id=info:pmid/&rfr_iscdi=true