Neuromorphic analog spiking-modulator for audio signal processing
While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal or...
Gespeichert in:
Veröffentlicht in: | Analog integrated circuits and signal processing 2021, Vol.106 (1), p.261-276 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 1 |
container_start_page | 261 |
container_title | Analog integrated circuits and signal processing |
container_volume | 106 |
creator | Ferreira, Pietro M. Nebhen, Jamel Klisnick, Geoffroy Benlarbi-Delai, Aziz |
description | While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions. While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored reducing the silicon area to
98.6
μ
m
2
and the substrate leakage to a
1.95
fJ
/
spike
efficiency. Post-layout simulation results are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing applications. The proposal demonstrates a
9
bits
spiking-modulator resolution, a maximum of
8
fJ
/
conv
efficiency, and a root–mean–square error of
0.63
mV
RMS
. |
doi_str_mv | 10.1007/s10470-020-01729-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02948290v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485017706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-33d6902285141126f379ad089c1b4a8ad8f4da2c58980445038dbb9df3a4f4f13</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOCJw_Rlz_bJMdStBWKXvQc0s1mm7pt1qQr-O3NsqI3D8ODx2-GYRC6JnBHAMR9IsAFYKBZRFCF2QmakFIwTJRQp2gCipaYAINzdJHSDgCo4DBB8-e6j2EfYrf1VWEOpg1NkTr_7g8N3gfbt-YYYuGyTG99KJJvMlR0MVR1Spm6RGfOtKm--rlT9Pb48LpY4fXL8mkxX-OKKXHEjNmZAkplSTghdOaYUMaCVBXZcCONlY5bQ6tSKgmcl8Ck3WyUdcxwxx1hU3Q75m5Nq7vo9yZ-6WC8Xs3XevgBVVxSBZ8DezOyueZHX6ej3oU-5t5JUy7LPJGAWaboSFUxpBRr9xtLQA-z6nHWnJw1zKpZNrHRlDJ8aOr4F_2P6xuXVXkL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485017706</pqid></control><display><type>article</type><title>Neuromorphic analog spiking-modulator for audio signal processing</title><source>SpringerNature Journals</source><creator>Ferreira, Pietro M. ; Nebhen, Jamel ; Klisnick, Geoffroy ; Benlarbi-Delai, Aziz</creator><creatorcontrib>Ferreira, Pietro M. ; Nebhen, Jamel ; Klisnick, Geoffroy ; Benlarbi-Delai, Aziz</creatorcontrib><description>While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions. While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored reducing the silicon area to
98.6
μ
m
2
and the substrate leakage to a
1.95
fJ
/
spike
efficiency. Post-layout simulation results are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing applications. The proposal demonstrates a
9
bits
spiking-modulator resolution, a maximum of
8
fJ
/
conv
efficiency, and a root–mean–square error of
0.63
mV
RMS
.</description><identifier>ISSN: 0925-1030</identifier><identifier>EISSN: 1573-1979</identifier><identifier>DOI: 10.1007/s10470-020-01729-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial vision ; Circuits ; Circuits and Systems ; CMOS ; Electrical Engineering ; Electronics ; Energy efficiency ; Engineering ; Engineering Sciences ; Micro and nanotechnologies ; Microelectronics ; Microprocessors ; Power management ; Signal processing ; Signal,Image and Speech Processing ; Silicon ; Spiking ; Substrates</subject><ispartof>Analog integrated circuits and signal processing, 2021, Vol.106 (1), p.261-276</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-33d6902285141126f379ad089c1b4a8ad8f4da2c58980445038dbb9df3a4f4f13</citedby><cites>FETCH-LOGICAL-c397t-33d6902285141126f379ad089c1b4a8ad8f4da2c58980445038dbb9df3a4f4f13</cites><orcidid>0000-0002-8610-3451 ; 0000-0003-4654-4735 ; 0000-0002-0038-9058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10470-020-01729-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10470-020-01729-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02948290$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, Pietro M.</creatorcontrib><creatorcontrib>Nebhen, Jamel</creatorcontrib><creatorcontrib>Klisnick, Geoffroy</creatorcontrib><creatorcontrib>Benlarbi-Delai, Aziz</creatorcontrib><title>Neuromorphic analog spiking-modulator for audio signal processing</title><title>Analog integrated circuits and signal processing</title><addtitle>Analog Integr Circ Sig Process</addtitle><description>While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions. While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored reducing the silicon area to
98.6
μ
m
2
and the substrate leakage to a
1.95
fJ
/
spike
efficiency. Post-layout simulation results are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing applications. The proposal demonstrates a
9
bits
spiking-modulator resolution, a maximum of
8
fJ
/
conv
efficiency, and a root–mean–square error of
0.63
mV
RMS
.</description><subject>Artificial vision</subject><subject>Circuits</subject><subject>Circuits and Systems</subject><subject>CMOS</subject><subject>Electrical Engineering</subject><subject>Electronics</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Microprocessors</subject><subject>Power management</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Silicon</subject><subject>Spiking</subject><subject>Substrates</subject><issn>0925-1030</issn><issn>1573-1979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNOCJw_Rlz_bJMdStBWKXvQc0s1mm7pt1qQr-O3NsqI3D8ODx2-GYRC6JnBHAMR9IsAFYKBZRFCF2QmakFIwTJRQp2gCipaYAINzdJHSDgCo4DBB8-e6j2EfYrf1VWEOpg1NkTr_7g8N3gfbt-YYYuGyTG99KJJvMlR0MVR1Spm6RGfOtKm--rlT9Pb48LpY4fXL8mkxX-OKKXHEjNmZAkplSTghdOaYUMaCVBXZcCONlY5bQ6tSKgmcl8Ck3WyUdcxwxx1hU3Q75m5Nq7vo9yZ-6WC8Xs3XevgBVVxSBZ8DezOyueZHX6ej3oU-5t5JUy7LPJGAWaboSFUxpBRr9xtLQA-z6nHWnJw1zKpZNrHRlDJ8aOr4F_2P6xuXVXkL</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ferreira, Pietro M.</creator><creator>Nebhen, Jamel</creator><creator>Klisnick, Geoffroy</creator><creator>Benlarbi-Delai, Aziz</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TG</scope><scope>8FD</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8610-3451</orcidid><orcidid>https://orcid.org/0000-0003-4654-4735</orcidid><orcidid>https://orcid.org/0000-0002-0038-9058</orcidid></search><sort><creationdate>2021</creationdate><title>Neuromorphic analog spiking-modulator for audio signal processing</title><author>Ferreira, Pietro M. ; Nebhen, Jamel ; Klisnick, Geoffroy ; Benlarbi-Delai, Aziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-33d6902285141126f379ad089c1b4a8ad8f4da2c58980445038dbb9df3a4f4f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial vision</topic><topic>Circuits</topic><topic>Circuits and Systems</topic><topic>CMOS</topic><topic>Electrical Engineering</topic><topic>Electronics</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Microprocessors</topic><topic>Power management</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Silicon</topic><topic>Spiking</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Pietro M.</creatorcontrib><creatorcontrib>Nebhen, Jamel</creatorcontrib><creatorcontrib>Klisnick, Geoffroy</creatorcontrib><creatorcontrib>Benlarbi-Delai, Aziz</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Analog integrated circuits and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Pietro M.</au><au>Nebhen, Jamel</au><au>Klisnick, Geoffroy</au><au>Benlarbi-Delai, Aziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromorphic analog spiking-modulator for audio signal processing</atitle><jtitle>Analog integrated circuits and signal processing</jtitle><stitle>Analog Integr Circ Sig Process</stitle><date>2021</date><risdate>2021</risdate><volume>106</volume><issue>1</issue><spage>261</spage><epage>276</epage><pages>261-276</pages><issn>0925-1030</issn><eissn>1573-1979</eissn><abstract>While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions. While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored reducing the silicon area to
98.6
μ
m
2
and the substrate leakage to a
1.95
fJ
/
spike
efficiency. Post-layout simulation results are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing applications. The proposal demonstrates a
9
bits
spiking-modulator resolution, a maximum of
8
fJ
/
conv
efficiency, and a root–mean–square error of
0.63
mV
RMS
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10470-020-01729-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8610-3451</orcidid><orcidid>https://orcid.org/0000-0003-4654-4735</orcidid><orcidid>https://orcid.org/0000-0002-0038-9058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1030 |
ispartof | Analog integrated circuits and signal processing, 2021, Vol.106 (1), p.261-276 |
issn | 0925-1030 1573-1979 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02948290v1 |
source | SpringerNature Journals |
subjects | Artificial vision Circuits Circuits and Systems CMOS Electrical Engineering Electronics Energy efficiency Engineering Engineering Sciences Micro and nanotechnologies Microelectronics Microprocessors Power management Signal processing Signal,Image and Speech Processing Silicon Spiking Substrates |
title | Neuromorphic analog spiking-modulator for audio signal processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromorphic%20analog%20spiking-modulator%20for%20audio%20signal%20processing&rft.jtitle=Analog%20integrated%20circuits%20and%20signal%20processing&rft.au=Ferreira,%20Pietro%20M.&rft.date=2021&rft.volume=106&rft.issue=1&rft.spage=261&rft.epage=276&rft.pages=261-276&rft.issn=0925-1030&rft.eissn=1573-1979&rft_id=info:doi/10.1007/s10470-020-01729-3&rft_dat=%3Cproquest_hal_p%3E2485017706%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485017706&rft_id=info:pmid/&rfr_iscdi=true |