PrandtlPlane wing-box least-weight design: A multi-scale optimisation approach
The PrandtlPlane (PrP) aircraft wing-box least-weight design is presented in this work. This design problem is formulated as a constrained non-linear programming problem (CNLPP), by integrating static, buckling, fatigue and manufacturability requirements, under different loading conditions. The solu...
Gespeichert in:
Veröffentlicht in: | Aerospace science and technology 2020-11, Vol.106, p.106156, Article 106156 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The PrandtlPlane (PrP) aircraft wing-box least-weight design is presented in this work. This design problem is formulated as a constrained non-linear programming problem (CNLPP), by integrating static, buckling, fatigue and manufacturability requirements, under different loading conditions. The solution search is carried out by means of a suitable multi-scale optimisation (MSO) approach. The physical responses involved into the CNLPP formulation are evaluated at the wing-box architecture level (macroscopic scale) and at the stiffened panel level (component scale), as well. The scale transition is ensured by means of a suitable global-local (GL) modelling approach, while the CNLPP is solved by means of an in-house genetic algorithm. The effectiveness of the proposed approach is tested on the PrP wing-box structure, but the presented strategy can be easily extended to conventional aircraft wings. |
---|---|
ISSN: | 1270-9638 1626-3219 |
DOI: | 10.1016/j.ast.2020.106156 |