Effect of observed micropolar motions on wave propagation in deep Earth minerals

•Micropolar media.•Seismic wave propagation.•Cosserat couple modulus.•Bridgmanite.•Potassium nitrate. We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the earth and planetary interiors 2018-03, Vol.276, p.215-225
Hauptverfasser: Abreu, Rafael, Thomas, Christine, Durand, Stephanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue
container_start_page 215
container_title Physics of the earth and planetary interiors
container_volume 276
creator Abreu, Rafael
Thomas, Christine
Durand, Stephanie
description •Micropolar media.•Seismic wave propagation.•Cosserat couple modulus.•Bridgmanite.•Potassium nitrate. We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr, which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth’s mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth’s mantle material by providing Cosserat couple modulus that were not available before.
doi_str_mv 10.1016/j.pepi.2017.04.006
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02944841v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031920117300456</els_id><sourcerecordid>S0031920117300456</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-35ccc6f2b14760b7949b192cdb8cb540bca8898f787a6c6682aa6f32463171fc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFOuHnadfDTJgpdS6gcU9KDnkM0mNqXdLMlS8d-bpeLR08C88wy8D0K3BGoCRNzv6sENoaZAZA28BhBnaEaUpJVkzeIczQAYqZqSX6KrnHcAQBhlM_S29t7ZEUePY5tdOroOH4JNcYh7k_AhjiH2Gccef5mjw0MJzKeZljj0uHNuwGuTxm2BepfMPl-jC1-Gu_mdc_TxuH5fPVeb16eX1XJTGS7kWLGFtVZ42hIuBbSy4U1LGmq7Vtl2waG1RqlGeamkEVYIRY0RnlEuGJHEWzZHd6e_W7PXQwoHk751NEE_Lzd62gFtOFecHEm5pafb0ivn5PwfQEBP_vROT_705E8D18VfgR5OkCstjsElnW1wvXVdSMWY7mL4D_8BoE15BA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of observed micropolar motions on wave propagation in deep Earth minerals</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abreu, Rafael ; Thomas, Christine ; Durand, Stephanie</creator><creatorcontrib>Abreu, Rafael ; Thomas, Christine ; Durand, Stephanie</creatorcontrib><description>•Micropolar media.•Seismic wave propagation.•Cosserat couple modulus.•Bridgmanite.•Potassium nitrate. We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr, which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth’s mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth’s mantle material by providing Cosserat couple modulus that were not available before.</description><identifier>ISSN: 0031-9201</identifier><identifier>EISSN: 1872-7395</identifier><identifier>EISSN: 0031-9201</identifier><identifier>DOI: 10.1016/j.pepi.2017.04.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bridgmanite ; Computational mineralogy ; Earth Sciences ; Geophysics ; MgSiO3 silicate perovskite ; Potassium nitrate ; Sciences of the Universe ; Wave propagation</subject><ispartof>Physics of the earth and planetary interiors, 2018-03, Vol.276, p.215-225</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-35ccc6f2b14760b7949b192cdb8cb540bca8898f787a6c6682aa6f32463171fc3</citedby><cites>FETCH-LOGICAL-a467t-35ccc6f2b14760b7949b192cdb8cb540bca8898f787a6c6682aa6f32463171fc3</cites><orcidid>0000-0001-9870-5006 ; 0000-0002-2415-6793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pepi.2017.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02944841$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abreu, Rafael</creatorcontrib><creatorcontrib>Thomas, Christine</creatorcontrib><creatorcontrib>Durand, Stephanie</creatorcontrib><title>Effect of observed micropolar motions on wave propagation in deep Earth minerals</title><title>Physics of the earth and planetary interiors</title><description>•Micropolar media.•Seismic wave propagation.•Cosserat couple modulus.•Bridgmanite.•Potassium nitrate. We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr, which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth’s mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth’s mantle material by providing Cosserat couple modulus that were not available before.</description><subject>Bridgmanite</subject><subject>Computational mineralogy</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>MgSiO3 silicate perovskite</subject><subject>Potassium nitrate</subject><subject>Sciences of the Universe</subject><subject>Wave propagation</subject><issn>0031-9201</issn><issn>1872-7395</issn><issn>0031-9201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFOuHnadfDTJgpdS6gcU9KDnkM0mNqXdLMlS8d-bpeLR08C88wy8D0K3BGoCRNzv6sENoaZAZA28BhBnaEaUpJVkzeIczQAYqZqSX6KrnHcAQBhlM_S29t7ZEUePY5tdOroOH4JNcYh7k_AhjiH2Gccef5mjw0MJzKeZljj0uHNuwGuTxm2BepfMPl-jC1-Gu_mdc_TxuH5fPVeb16eX1XJTGS7kWLGFtVZ42hIuBbSy4U1LGmq7Vtl2waG1RqlGeamkEVYIRY0RnlEuGJHEWzZHd6e_W7PXQwoHk751NEE_Lzd62gFtOFecHEm5pafb0ivn5PwfQEBP_vROT_705E8D18VfgR5OkCstjsElnW1wvXVdSMWY7mL4D_8BoE15BA</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Abreu, Rafael</creator><creator>Thomas, Christine</creator><creator>Durand, Stephanie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9870-5006</orcidid><orcidid>https://orcid.org/0000-0002-2415-6793</orcidid></search><sort><creationdate>20180301</creationdate><title>Effect of observed micropolar motions on wave propagation in deep Earth minerals</title><author>Abreu, Rafael ; Thomas, Christine ; Durand, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-35ccc6f2b14760b7949b192cdb8cb540bca8898f787a6c6682aa6f32463171fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bridgmanite</topic><topic>Computational mineralogy</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>MgSiO3 silicate perovskite</topic><topic>Potassium nitrate</topic><topic>Sciences of the Universe</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abreu, Rafael</creatorcontrib><creatorcontrib>Thomas, Christine</creatorcontrib><creatorcontrib>Durand, Stephanie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of the earth and planetary interiors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abreu, Rafael</au><au>Thomas, Christine</au><au>Durand, Stephanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of observed micropolar motions on wave propagation in deep Earth minerals</atitle><jtitle>Physics of the earth and planetary interiors</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>276</volume><spage>215</spage><epage>225</epage><pages>215-225</pages><issn>0031-9201</issn><eissn>1872-7395</eissn><eissn>0031-9201</eissn><abstract>•Micropolar media.•Seismic wave propagation.•Cosserat couple modulus.•Bridgmanite.•Potassium nitrate. We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr, which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth’s mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth’s mantle material by providing Cosserat couple modulus that were not available before.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.pepi.2017.04.006</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9870-5006</orcidid><orcidid>https://orcid.org/0000-0002-2415-6793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9201
ispartof Physics of the earth and planetary interiors, 2018-03, Vol.276, p.215-225
issn 0031-9201
1872-7395
0031-9201
language eng
recordid cdi_hal_primary_oai_HAL_hal_02944841v1
source Access via ScienceDirect (Elsevier)
subjects Bridgmanite
Computational mineralogy
Earth Sciences
Geophysics
MgSiO3 silicate perovskite
Potassium nitrate
Sciences of the Universe
Wave propagation
title Effect of observed micropolar motions on wave propagation in deep Earth minerals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20observed%20micropolar%20motions%20on%20wave%20propagation%20in%20deep%20Earth%20minerals&rft.jtitle=Physics%20of%20the%20earth%20and%20planetary%20interiors&rft.au=Abreu,%20Rafael&rft.date=2018-03-01&rft.volume=276&rft.spage=215&rft.epage=225&rft.pages=215-225&rft.issn=0031-9201&rft.eissn=1872-7395&rft_id=info:doi/10.1016/j.pepi.2017.04.006&rft_dat=%3Celsevier_hal_p%3ES0031920117300456%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0031920117300456&rfr_iscdi=true