Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites

Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2019-06, Vol.127, p.47-61
Hauptverfasser: Morch, Annie, Astruc, Laure, Witz, Jean-François, Lesaffre, François, Lecomte-Grosbras, Pauline, Soulat, Damien, Brieu, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue
container_start_page 47
container_title Journal of the mechanics and physics of solids
container_volume 127
creator Morch, Annie
Astruc, Laure
Witz, Jean-François
Lesaffre, François
Lecomte-Grosbras, Pauline
Soulat, Damien
Brieu, Mathias
description Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of the native tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior of the composite regarding the tissue nature and the textile properties would accelerate the choice of the appropriate knit. We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple micro or meso-structural observations with mechanical considerations. Knitted fabric composites display oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer. This work focuses on the development of a new directional model for the mechanical representation of anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite in uniaxial tension.
doi_str_mv 10.1016/j.jmps.2019.03.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02942162v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509618305507</els_id><sourcerecordid>2225230620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7d2a7a1a5253815d7d239f2180cb22f35f80ca2742a6afc7d5dcf637bc2605d63</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpoa6TP9DTQk857GY0Wmlt6MWEpC445JKSo5C1o0Rbe7WV5ED-fbW49JjTfL3vMPMw9pVDw4Gr66EZjlNqEPi6AdEAqA9swVedqNtuhR_ZAgCxlrBWn9mXlAYAkNDxBXu6Dz0d_PhcBVeZ0aeQY5i8rV7eJop0MCnPBWWK4ZlGCqdU_R59ztRXzuxjGUbyowvRlo4NxykknyldsE_OHBJd_otL9uvu9vFmW-8efvy82exq24LKddej6Qw3EqVYcdmXWqwd8hXYPaIT0pXMYNeiUcbZrpe9dUp0e4sKZK_Ekl2d976Yg56iP5r4poPxervZ6bkHuG6RK3zlRfvtrJ1i-HOilPUQTnEs52lElChAIRQVnlU2hpQiuf9rOegZth70DFvPsDUIXWAX0_ezicqvr56iTtbTWJj4SDbrPvj37H8BdeyIxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225230620</pqid></control><display><type>article</type><title>Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites</title><source>Elsevier ScienceDirect Journals</source><creator>Morch, Annie ; Astruc, Laure ; Witz, Jean-François ; Lesaffre, François ; Lecomte-Grosbras, Pauline ; Soulat, Damien ; Brieu, Mathias</creator><creatorcontrib>Morch, Annie ; Astruc, Laure ; Witz, Jean-François ; Lesaffre, François ; Lecomte-Grosbras, Pauline ; Soulat, Damien ; Brieu, Mathias</creatorcontrib><description>Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of the native tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior of the composite regarding the tissue nature and the textile properties would accelerate the choice of the appropriate knit. We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple micro or meso-structural observations with mechanical considerations. Knitted fabric composites display oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer. This work focuses on the development of a new directional model for the mechanical representation of anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite in uniaxial tension.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2019.03.006</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Anisotropy ; Composite ; Composite materials ; Constitutive modeling ; Elastomers ; Engineering Sciences ; Fabrics ; Hyperelasticity ; Knitted fabric ; Mathematical models ; Mechanical properties ; Mechanics ; Modelling ; Network model ; Rubber-like materials ; Strain energy density ; Surgical implants ; Uniaxial tension</subject><ispartof>Journal of the mechanics and physics of solids, 2019-06, Vol.127, p.47-61</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7d2a7a1a5253815d7d239f2180cb22f35f80ca2742a6afc7d5dcf637bc2605d63</citedby><cites>FETCH-LOGICAL-c406t-7d2a7a1a5253815d7d239f2180cb22f35f80ca2742a6afc7d5dcf637bc2605d63</cites><orcidid>0000-0002-3566-3758 ; 0000-0002-7240-9476 ; 0000-0002-1538-2537 ; 0000-0002-1995-2090 ; 0000-0001-7911-4243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509618305507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02942162$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morch, Annie</creatorcontrib><creatorcontrib>Astruc, Laure</creatorcontrib><creatorcontrib>Witz, Jean-François</creatorcontrib><creatorcontrib>Lesaffre, François</creatorcontrib><creatorcontrib>Lecomte-Grosbras, Pauline</creatorcontrib><creatorcontrib>Soulat, Damien</creatorcontrib><creatorcontrib>Brieu, Mathias</creatorcontrib><title>Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites</title><title>Journal of the mechanics and physics of solids</title><description>Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of the native tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior of the composite regarding the tissue nature and the textile properties would accelerate the choice of the appropriate knit. We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple micro or meso-structural observations with mechanical considerations. Knitted fabric composites display oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer. This work focuses on the development of a new directional model for the mechanical representation of anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite in uniaxial tension.</description><subject>Anisotropy</subject><subject>Composite</subject><subject>Composite materials</subject><subject>Constitutive modeling</subject><subject>Elastomers</subject><subject>Engineering Sciences</subject><subject>Fabrics</subject><subject>Hyperelasticity</subject><subject>Knitted fabric</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Modelling</subject><subject>Network model</subject><subject>Rubber-like materials</subject><subject>Strain energy density</subject><subject>Surgical implants</subject><subject>Uniaxial tension</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpoa6TP9DTQk857GY0Wmlt6MWEpC445JKSo5C1o0Rbe7WV5ED-fbW49JjTfL3vMPMw9pVDw4Gr66EZjlNqEPi6AdEAqA9swVedqNtuhR_ZAgCxlrBWn9mXlAYAkNDxBXu6Dz0d_PhcBVeZ0aeQY5i8rV7eJop0MCnPBWWK4ZlGCqdU_R59ztRXzuxjGUbyowvRlo4NxykknyldsE_OHBJd_otL9uvu9vFmW-8efvy82exq24LKddej6Qw3EqVYcdmXWqwd8hXYPaIT0pXMYNeiUcbZrpe9dUp0e4sKZK_Ekl2d976Yg56iP5r4poPxervZ6bkHuG6RK3zlRfvtrJ1i-HOilPUQTnEs52lElChAIRQVnlU2hpQiuf9rOegZth70DFvPsDUIXWAX0_ezicqvr56iTtbTWJj4SDbrPvj37H8BdeyIxg</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Morch, Annie</creator><creator>Astruc, Laure</creator><creator>Witz, Jean-François</creator><creator>Lesaffre, François</creator><creator>Lecomte-Grosbras, Pauline</creator><creator>Soulat, Damien</creator><creator>Brieu, Mathias</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3566-3758</orcidid><orcidid>https://orcid.org/0000-0002-7240-9476</orcidid><orcidid>https://orcid.org/0000-0002-1538-2537</orcidid><orcidid>https://orcid.org/0000-0002-1995-2090</orcidid><orcidid>https://orcid.org/0000-0001-7911-4243</orcidid></search><sort><creationdate>201906</creationdate><title>Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites</title><author>Morch, Annie ; Astruc, Laure ; Witz, Jean-François ; Lesaffre, François ; Lecomte-Grosbras, Pauline ; Soulat, Damien ; Brieu, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7d2a7a1a5253815d7d239f2180cb22f35f80ca2742a6afc7d5dcf637bc2605d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Composite</topic><topic>Composite materials</topic><topic>Constitutive modeling</topic><topic>Elastomers</topic><topic>Engineering Sciences</topic><topic>Fabrics</topic><topic>Hyperelasticity</topic><topic>Knitted fabric</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Modelling</topic><topic>Network model</topic><topic>Rubber-like materials</topic><topic>Strain energy density</topic><topic>Surgical implants</topic><topic>Uniaxial tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morch, Annie</creatorcontrib><creatorcontrib>Astruc, Laure</creatorcontrib><creatorcontrib>Witz, Jean-François</creatorcontrib><creatorcontrib>Lesaffre, François</creatorcontrib><creatorcontrib>Lecomte-Grosbras, Pauline</creatorcontrib><creatorcontrib>Soulat, Damien</creatorcontrib><creatorcontrib>Brieu, Mathias</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morch, Annie</au><au>Astruc, Laure</au><au>Witz, Jean-François</au><au>Lesaffre, François</au><au>Lecomte-Grosbras, Pauline</au><au>Soulat, Damien</au><au>Brieu, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2019-06</date><risdate>2019</risdate><volume>127</volume><spage>47</spage><epage>61</epage><pages>47-61</pages><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of the native tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior of the composite regarding the tissue nature and the textile properties would accelerate the choice of the appropriate knit. We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple micro or meso-structural observations with mechanical considerations. Knitted fabric composites display oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer. This work focuses on the development of a new directional model for the mechanical representation of anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite in uniaxial tension.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2019.03.006</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3566-3758</orcidid><orcidid>https://orcid.org/0000-0002-7240-9476</orcidid><orcidid>https://orcid.org/0000-0002-1538-2537</orcidid><orcidid>https://orcid.org/0000-0002-1995-2090</orcidid><orcidid>https://orcid.org/0000-0001-7911-4243</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2019-06, Vol.127, p.47-61
issn 0022-5096
1873-4782
language eng
recordid cdi_hal_primary_oai_HAL_hal_02942162v1
source Elsevier ScienceDirect Journals
subjects Anisotropy
Composite
Composite materials
Constitutive modeling
Elastomers
Engineering Sciences
Fabrics
Hyperelasticity
Knitted fabric
Mathematical models
Mechanical properties
Mechanics
Modelling
Network model
Rubber-like materials
Strain energy density
Surgical implants
Uniaxial tension
title Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20anisotropic%20hyperelastic%20heterogeneous%20knitted%20fabric%20reinforced%20composites&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Morch,%20Annie&rft.date=2019-06&rft.volume=127&rft.spage=47&rft.epage=61&rft.pages=47-61&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2019.03.006&rft_dat=%3Cproquest_hal_p%3E2225230620%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225230620&rft_id=info:pmid/&rft_els_id=S0022509618305507&rfr_iscdi=true