Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites
Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanics and physics of solids 2019-06, Vol.127, p.47-61 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 127 |
creator | Morch, Annie Astruc, Laure Witz, Jean-François Lesaffre, François Lecomte-Grosbras, Pauline Soulat, Damien Brieu, Mathias |
description | Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of the native tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior of the composite regarding the tissue nature and the textile properties would accelerate the choice of the appropriate knit.
We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple micro or meso-structural observations with mechanical considerations. Knitted fabric composites display oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer.
This work focuses on the development of a new directional model for the mechanical representation of anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite in uniaxial tension. |
doi_str_mv | 10.1016/j.jmps.2019.03.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02942162v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509618305507</els_id><sourcerecordid>2225230620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7d2a7a1a5253815d7d239f2180cb22f35f80ca2742a6afc7d5dcf637bc2605d63</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpoa6TP9DTQk857GY0Wmlt6MWEpC445JKSo5C1o0Rbe7WV5ED-fbW49JjTfL3vMPMw9pVDw4Gr66EZjlNqEPi6AdEAqA9swVedqNtuhR_ZAgCxlrBWn9mXlAYAkNDxBXu6Dz0d_PhcBVeZ0aeQY5i8rV7eJop0MCnPBWWK4ZlGCqdU_R59ztRXzuxjGUbyowvRlo4NxykknyldsE_OHBJd_otL9uvu9vFmW-8efvy82exq24LKddej6Qw3EqVYcdmXWqwd8hXYPaIT0pXMYNeiUcbZrpe9dUp0e4sKZK_Ekl2d976Yg56iP5r4poPxervZ6bkHuG6RK3zlRfvtrJ1i-HOilPUQTnEs52lElChAIRQVnlU2hpQiuf9rOegZth70DFvPsDUIXWAX0_ezicqvr56iTtbTWJj4SDbrPvj37H8BdeyIxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225230620</pqid></control><display><type>article</type><title>Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites</title><source>Elsevier ScienceDirect Journals</source><creator>Morch, Annie ; Astruc, Laure ; Witz, Jean-François ; Lesaffre, François ; Lecomte-Grosbras, Pauline ; Soulat, Damien ; Brieu, Mathias</creator><creatorcontrib>Morch, Annie ; Astruc, Laure ; Witz, Jean-François ; Lesaffre, François ; Lecomte-Grosbras, Pauline ; Soulat, Damien ; Brieu, Mathias</creatorcontrib><description>Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of the native tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior of the composite regarding the tissue nature and the textile properties would accelerate the choice of the appropriate knit.
We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple micro or meso-structural observations with mechanical considerations. Knitted fabric composites display oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer.
This work focuses on the development of a new directional model for the mechanical representation of anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite in uniaxial tension.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2019.03.006</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Anisotropy ; Composite ; Composite materials ; Constitutive modeling ; Elastomers ; Engineering Sciences ; Fabrics ; Hyperelasticity ; Knitted fabric ; Mathematical models ; Mechanical properties ; Mechanics ; Modelling ; Network model ; Rubber-like materials ; Strain energy density ; Surgical implants ; Uniaxial tension</subject><ispartof>Journal of the mechanics and physics of solids, 2019-06, Vol.127, p.47-61</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7d2a7a1a5253815d7d239f2180cb22f35f80ca2742a6afc7d5dcf637bc2605d63</citedby><cites>FETCH-LOGICAL-c406t-7d2a7a1a5253815d7d239f2180cb22f35f80ca2742a6afc7d5dcf637bc2605d63</cites><orcidid>0000-0002-3566-3758 ; 0000-0002-7240-9476 ; 0000-0002-1538-2537 ; 0000-0002-1995-2090 ; 0000-0001-7911-4243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509618305507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02942162$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morch, Annie</creatorcontrib><creatorcontrib>Astruc, Laure</creatorcontrib><creatorcontrib>Witz, Jean-François</creatorcontrib><creatorcontrib>Lesaffre, François</creatorcontrib><creatorcontrib>Lecomte-Grosbras, Pauline</creatorcontrib><creatorcontrib>Soulat, Damien</creatorcontrib><creatorcontrib>Brieu, Mathias</creatorcontrib><title>Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites</title><title>Journal of the mechanics and physics of solids</title><description>Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of the native tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior of the composite regarding the tissue nature and the textile properties would accelerate the choice of the appropriate knit.
We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple micro or meso-structural observations with mechanical considerations. Knitted fabric composites display oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer.
This work focuses on the development of a new directional model for the mechanical representation of anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite in uniaxial tension.</description><subject>Anisotropy</subject><subject>Composite</subject><subject>Composite materials</subject><subject>Constitutive modeling</subject><subject>Elastomers</subject><subject>Engineering Sciences</subject><subject>Fabrics</subject><subject>Hyperelasticity</subject><subject>Knitted fabric</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Modelling</subject><subject>Network model</subject><subject>Rubber-like materials</subject><subject>Strain energy density</subject><subject>Surgical implants</subject><subject>Uniaxial tension</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpoa6TP9DTQk857GY0Wmlt6MWEpC445JKSo5C1o0Rbe7WV5ED-fbW49JjTfL3vMPMw9pVDw4Gr66EZjlNqEPi6AdEAqA9swVedqNtuhR_ZAgCxlrBWn9mXlAYAkNDxBXu6Dz0d_PhcBVeZ0aeQY5i8rV7eJop0MCnPBWWK4ZlGCqdU_R59ztRXzuxjGUbyowvRlo4NxykknyldsE_OHBJd_otL9uvu9vFmW-8efvy82exq24LKddej6Qw3EqVYcdmXWqwd8hXYPaIT0pXMYNeiUcbZrpe9dUp0e4sKZK_Ekl2d976Yg56iP5r4poPxervZ6bkHuG6RK3zlRfvtrJ1i-HOilPUQTnEs52lElChAIRQVnlU2hpQiuf9rOegZth70DFvPsDUIXWAX0_ezicqvr56iTtbTWJj4SDbrPvj37H8BdeyIxg</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Morch, Annie</creator><creator>Astruc, Laure</creator><creator>Witz, Jean-François</creator><creator>Lesaffre, François</creator><creator>Lecomte-Grosbras, Pauline</creator><creator>Soulat, Damien</creator><creator>Brieu, Mathias</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3566-3758</orcidid><orcidid>https://orcid.org/0000-0002-7240-9476</orcidid><orcidid>https://orcid.org/0000-0002-1538-2537</orcidid><orcidid>https://orcid.org/0000-0002-1995-2090</orcidid><orcidid>https://orcid.org/0000-0001-7911-4243</orcidid></search><sort><creationdate>201906</creationdate><title>Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites</title><author>Morch, Annie ; Astruc, Laure ; Witz, Jean-François ; Lesaffre, François ; Lecomte-Grosbras, Pauline ; Soulat, Damien ; Brieu, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7d2a7a1a5253815d7d239f2180cb22f35f80ca2742a6afc7d5dcf637bc2605d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Composite</topic><topic>Composite materials</topic><topic>Constitutive modeling</topic><topic>Elastomers</topic><topic>Engineering Sciences</topic><topic>Fabrics</topic><topic>Hyperelasticity</topic><topic>Knitted fabric</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Modelling</topic><topic>Network model</topic><topic>Rubber-like materials</topic><topic>Strain energy density</topic><topic>Surgical implants</topic><topic>Uniaxial tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morch, Annie</creatorcontrib><creatorcontrib>Astruc, Laure</creatorcontrib><creatorcontrib>Witz, Jean-François</creatorcontrib><creatorcontrib>Lesaffre, François</creatorcontrib><creatorcontrib>Lecomte-Grosbras, Pauline</creatorcontrib><creatorcontrib>Soulat, Damien</creatorcontrib><creatorcontrib>Brieu, Mathias</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morch, Annie</au><au>Astruc, Laure</au><au>Witz, Jean-François</au><au>Lesaffre, François</au><au>Lecomte-Grosbras, Pauline</au><au>Soulat, Damien</au><au>Brieu, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2019-06</date><risdate>2019</risdate><volume>127</volume><spage>47</spage><epage>61</epage><pages>47-61</pages><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>Knitted fabrics are used to manufacture soft implants for medical applications. Once integrated in the body, the fabric forms a new composite material with the native and scar tissues. The mechanical behavior of the composite is assumed to be hyperelastic to match with the physiological behavior of the native tissues and thus to improve the fabric in vivo integration. Being able to predict the mechanical behavior of the composite regarding the tissue nature and the textile properties would accelerate the choice of the appropriate knit.
We propose an approach for modeling the mechanical behavior of an hyperelastic material reinforced by a knitted fabric. The main idea of the modeling approach described in the present paper is to couple micro or meso-structural observations with mechanical considerations. Knitted fabric composites display oriented and periodic microstructures. Since most knitted fabrics present a non-linear anisotropic mechanical behavior, the hyperelastic directional formalism seems appropriate to model the reinforced elastomer.
This work focuses on the development of a new directional model for the mechanical representation of anisotropic knitted fabric reinforced elastomers. The material is described with the help of a discrete network of directions that contribute distinctively to the material’s global behavior. Experimental data obtained on reinforced elastomer composites were used to confirm the accuracy of the results as well as the prediction capabilities of the model. It seems able to represent an anisotropic stress answer of microstructured composite in uniaxial tension.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2019.03.006</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3566-3758</orcidid><orcidid>https://orcid.org/0000-0002-7240-9476</orcidid><orcidid>https://orcid.org/0000-0002-1538-2537</orcidid><orcidid>https://orcid.org/0000-0002-1995-2090</orcidid><orcidid>https://orcid.org/0000-0001-7911-4243</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2019-06, Vol.127, p.47-61 |
issn | 0022-5096 1873-4782 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02942162v1 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropy Composite Composite materials Constitutive modeling Elastomers Engineering Sciences Fabrics Hyperelasticity Knitted fabric Mathematical models Mechanical properties Mechanics Modelling Network model Rubber-like materials Strain energy density Surgical implants Uniaxial tension |
title | Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20anisotropic%20hyperelastic%20heterogeneous%20knitted%20fabric%20reinforced%20composites&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Morch,%20Annie&rft.date=2019-06&rft.volume=127&rft.spage=47&rft.epage=61&rft.pages=47-61&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2019.03.006&rft_dat=%3Cproquest_hal_p%3E2225230620%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225230620&rft_id=info:pmid/&rft_els_id=S0022509618305507&rfr_iscdi=true |