Impact of thermal oxidation on mechanical behavior of polydicylopentadiene: Case of non-diffusion limited oxidation
Impact of thermal oxidation on mechanical behavior of polydicyclopentadiene (pDCPD) is studied in this paper. Thermal oxidation is performed over a wide range of ageing temperature, from 20 °C to 120 °C using 60 μm thin films in order to avoid heterogeneous degradation through sample thickness. Afte...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2020-09, Vol.179, p.109294, Article 109294 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109294 |
container_title | Polymer degradation and stability |
container_volume | 179 |
creator | David, Adelina Huang, Jing Richaud, Emmanuel Yves Le Gac, Pierre |
description | Impact of thermal oxidation on mechanical behavior of polydicyclopentadiene (pDCPD) is studied in this paper. Thermal oxidation is performed over a wide range of ageing temperature, from 20 °C to 120 °C using 60 μm thin films in order to avoid heterogeneous degradation through sample thickness. After several ageing durations, chemical changes were monitored using Fourier-transform infrared spectroscopy (FTIR) and network modification (e.g. glass transition, Tg) was measured using dynamic mechanical analysis (DMA). In addition, tensile tests and fracture tests, based on the essential work of fracture (EWF) concept, were used to study how oxidation affects some mechanical properties of pDCPD. During oxidation polydicyclopentadiene undergoes crosslinking due to the presence of double bonds that leads to a large increase in Tg (from 150 to 225 °C) as well as an increase in rubbery modulus. This increase in Tg results in an increase in maximal stress that can be described using the Kambour relationship. In parallel, an embrittlement of the polymer is observed here with a decrease in both essential and non-essential work of fracture. Finally, it appears that the accelerating effect of ageing temperature can be described using an Arrhenius equation with an activation energy close to 65 kJ/mol for carbonyl formation, maximal stress changes and decrease in fracture energy.
•Thermal oxidation of polydicylopentadiene leads an increase in crosslink density.•Oxidation leads to an embrittlement of the polydicylopentadiene.•Fracture energy loss follows an Arrhenius behavior. |
doi_str_mv | 10.1016/j.polymdegradstab.2020.109294 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02937499v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391020302263</els_id><sourcerecordid>2449279676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-6f67d14720c4389f4cb98b2545c64f05287fe5f533ae5ebdc02e4899438eca1b3</originalsourceid><addsrcrecordid>eNqNkU1r4zAQhkXpQtPu_gfD0kMPTiVZ_lChhxDaphDoZfcsZGm0UbAtV1JC8-9XxqWFnioGBDPPvCPNi9A1wUuCSXW7X46uO_Ua_nmpQ5TtkmI61Tjl7AwtSFMXOS0oOUcLTBjJC07wBboMYY_TYSVZoPDcj1LFzJks7sD3ssvcm9UyWjdkKXpQOzlYlfIt7OTROj-x02Bt1alzIwxRagsD3GVrGWCqDm7ItTXmECaVzvY2gv7U_Yl-GNkF-PV-X6G_jw9_1pt8-_L0vF5tc1WSKuaVqWpNWE2xYkXDDVMtb1paslJVzOCSNrWB0pRFIaGEVitMgTWcJxiUJG1xhW5m3Z3sxOhtL_1JOGnFZrUVUw5TXtSM8yNJ7O-ZHb17PUCIYu8OfkjPE5QxTmte1VWi7mdKeReCB_MhS7CYPBF78cUTMXkiZk9S_9PcD-nbRwteBJVWp0BbDyoK7ew3lf4DuwOf7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449279676</pqid></control><display><type>article</type><title>Impact of thermal oxidation on mechanical behavior of polydicylopentadiene: Case of non-diffusion limited oxidation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>David, Adelina ; Huang, Jing ; Richaud, Emmanuel ; Yves Le Gac, Pierre</creator><creatorcontrib>David, Adelina ; Huang, Jing ; Richaud, Emmanuel ; Yves Le Gac, Pierre</creatorcontrib><description>Impact of thermal oxidation on mechanical behavior of polydicyclopentadiene (pDCPD) is studied in this paper. Thermal oxidation is performed over a wide range of ageing temperature, from 20 °C to 120 °C using 60 μm thin films in order to avoid heterogeneous degradation through sample thickness. After several ageing durations, chemical changes were monitored using Fourier-transform infrared spectroscopy (FTIR) and network modification (e.g. glass transition, Tg) was measured using dynamic mechanical analysis (DMA). In addition, tensile tests and fracture tests, based on the essential work of fracture (EWF) concept, were used to study how oxidation affects some mechanical properties of pDCPD. During oxidation polydicyclopentadiene undergoes crosslinking due to the presence of double bonds that leads to a large increase in Tg (from 150 to 225 °C) as well as an increase in rubbery modulus. This increase in Tg results in an increase in maximal stress that can be described using the Kambour relationship. In parallel, an embrittlement of the polymer is observed here with a decrease in both essential and non-essential work of fracture. Finally, it appears that the accelerating effect of ageing temperature can be described using an Arrhenius equation with an activation energy close to 65 kJ/mol for carbonyl formation, maximal stress changes and decrease in fracture energy.
•Thermal oxidation of polydicylopentadiene leads an increase in crosslink density.•Oxidation leads to an embrittlement of the polydicylopentadiene.•Fracture energy loss follows an Arrhenius behavior.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2020.109294</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Carbonyls ; Chemical Sciences ; Crosslinking ; Dynamic mechanical analysis ; Engineering Sciences ; Fourier transforms ; Fracture properties ; Fracture testing ; Fracture toughness ; Glass transition ; Materials ; Mechanical properties ; Oxidation ; Polydicyclopentediene ; Polymers ; Tensile tests ; Thermal oxidation ; Thin films</subject><ispartof>Polymer degradation and stability, 2020-09, Vol.179, p.109294, Article 109294</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-6f67d14720c4389f4cb98b2545c64f05287fe5f533ae5ebdc02e4899438eca1b3</citedby><cites>FETCH-LOGICAL-c516t-6f67d14720c4389f4cb98b2545c64f05287fe5f533ae5ebdc02e4899438eca1b3</cites><orcidid>0000-0002-5315-2599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141391020302263$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02937499$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>David, Adelina</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Richaud, Emmanuel</creatorcontrib><creatorcontrib>Yves Le Gac, Pierre</creatorcontrib><title>Impact of thermal oxidation on mechanical behavior of polydicylopentadiene: Case of non-diffusion limited oxidation</title><title>Polymer degradation and stability</title><description>Impact of thermal oxidation on mechanical behavior of polydicyclopentadiene (pDCPD) is studied in this paper. Thermal oxidation is performed over a wide range of ageing temperature, from 20 °C to 120 °C using 60 μm thin films in order to avoid heterogeneous degradation through sample thickness. After several ageing durations, chemical changes were monitored using Fourier-transform infrared spectroscopy (FTIR) and network modification (e.g. glass transition, Tg) was measured using dynamic mechanical analysis (DMA). In addition, tensile tests and fracture tests, based on the essential work of fracture (EWF) concept, were used to study how oxidation affects some mechanical properties of pDCPD. During oxidation polydicyclopentadiene undergoes crosslinking due to the presence of double bonds that leads to a large increase in Tg (from 150 to 225 °C) as well as an increase in rubbery modulus. This increase in Tg results in an increase in maximal stress that can be described using the Kambour relationship. In parallel, an embrittlement of the polymer is observed here with a decrease in both essential and non-essential work of fracture. Finally, it appears that the accelerating effect of ageing temperature can be described using an Arrhenius equation with an activation energy close to 65 kJ/mol for carbonyl formation, maximal stress changes and decrease in fracture energy.
•Thermal oxidation of polydicylopentadiene leads an increase in crosslink density.•Oxidation leads to an embrittlement of the polydicylopentadiene.•Fracture energy loss follows an Arrhenius behavior.</description><subject>Carbonyls</subject><subject>Chemical Sciences</subject><subject>Crosslinking</subject><subject>Dynamic mechanical analysis</subject><subject>Engineering Sciences</subject><subject>Fourier transforms</subject><subject>Fracture properties</subject><subject>Fracture testing</subject><subject>Fracture toughness</subject><subject>Glass transition</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Oxidation</subject><subject>Polydicyclopentediene</subject><subject>Polymers</subject><subject>Tensile tests</subject><subject>Thermal oxidation</subject><subject>Thin films</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r4zAQhkXpQtPu_gfD0kMPTiVZ_lChhxDaphDoZfcsZGm0UbAtV1JC8-9XxqWFnioGBDPPvCPNi9A1wUuCSXW7X46uO_Ua_nmpQ5TtkmI61Tjl7AwtSFMXOS0oOUcLTBjJC07wBboMYY_TYSVZoPDcj1LFzJks7sD3ssvcm9UyWjdkKXpQOzlYlfIt7OTROj-x02Bt1alzIwxRagsD3GVrGWCqDm7ItTXmECaVzvY2gv7U_Yl-GNkF-PV-X6G_jw9_1pt8-_L0vF5tc1WSKuaVqWpNWE2xYkXDDVMtb1paslJVzOCSNrWB0pRFIaGEVitMgTWcJxiUJG1xhW5m3Z3sxOhtL_1JOGnFZrUVUw5TXtSM8yNJ7O-ZHb17PUCIYu8OfkjPE5QxTmte1VWi7mdKeReCB_MhS7CYPBF78cUTMXkiZk9S_9PcD-nbRwteBJVWp0BbDyoK7ew3lf4DuwOf7Q</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>David, Adelina</creator><creator>Huang, Jing</creator><creator>Richaud, Emmanuel</creator><creator>Yves Le Gac, Pierre</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5315-2599</orcidid></search><sort><creationdate>20200901</creationdate><title>Impact of thermal oxidation on mechanical behavior of polydicylopentadiene: Case of non-diffusion limited oxidation</title><author>David, Adelina ; Huang, Jing ; Richaud, Emmanuel ; Yves Le Gac, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-6f67d14720c4389f4cb98b2545c64f05287fe5f533ae5ebdc02e4899438eca1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbonyls</topic><topic>Chemical Sciences</topic><topic>Crosslinking</topic><topic>Dynamic mechanical analysis</topic><topic>Engineering Sciences</topic><topic>Fourier transforms</topic><topic>Fracture properties</topic><topic>Fracture testing</topic><topic>Fracture toughness</topic><topic>Glass transition</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Oxidation</topic><topic>Polydicyclopentediene</topic><topic>Polymers</topic><topic>Tensile tests</topic><topic>Thermal oxidation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>David, Adelina</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Richaud, Emmanuel</creatorcontrib><creatorcontrib>Yves Le Gac, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David, Adelina</au><au>Huang, Jing</au><au>Richaud, Emmanuel</au><au>Yves Le Gac, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of thermal oxidation on mechanical behavior of polydicylopentadiene: Case of non-diffusion limited oxidation</atitle><jtitle>Polymer degradation and stability</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>179</volume><spage>109294</spage><pages>109294-</pages><artnum>109294</artnum><issn>0141-3910</issn><eissn>1873-2321</eissn><abstract>Impact of thermal oxidation on mechanical behavior of polydicyclopentadiene (pDCPD) is studied in this paper. Thermal oxidation is performed over a wide range of ageing temperature, from 20 °C to 120 °C using 60 μm thin films in order to avoid heterogeneous degradation through sample thickness. After several ageing durations, chemical changes were monitored using Fourier-transform infrared spectroscopy (FTIR) and network modification (e.g. glass transition, Tg) was measured using dynamic mechanical analysis (DMA). In addition, tensile tests and fracture tests, based on the essential work of fracture (EWF) concept, were used to study how oxidation affects some mechanical properties of pDCPD. During oxidation polydicyclopentadiene undergoes crosslinking due to the presence of double bonds that leads to a large increase in Tg (from 150 to 225 °C) as well as an increase in rubbery modulus. This increase in Tg results in an increase in maximal stress that can be described using the Kambour relationship. In parallel, an embrittlement of the polymer is observed here with a decrease in both essential and non-essential work of fracture. Finally, it appears that the accelerating effect of ageing temperature can be described using an Arrhenius equation with an activation energy close to 65 kJ/mol for carbonyl formation, maximal stress changes and decrease in fracture energy.
•Thermal oxidation of polydicylopentadiene leads an increase in crosslink density.•Oxidation leads to an embrittlement of the polydicylopentadiene.•Fracture energy loss follows an Arrhenius behavior.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2020.109294</doi><orcidid>https://orcid.org/0000-0002-5315-2599</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2020-09, Vol.179, p.109294, Article 109294 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02937499v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Carbonyls Chemical Sciences Crosslinking Dynamic mechanical analysis Engineering Sciences Fourier transforms Fracture properties Fracture testing Fracture toughness Glass transition Materials Mechanical properties Oxidation Polydicyclopentediene Polymers Tensile tests Thermal oxidation Thin films |
title | Impact of thermal oxidation on mechanical behavior of polydicylopentadiene: Case of non-diffusion limited oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20thermal%20oxidation%20on%20mechanical%20behavior%20of%20polydicylopentadiene:%20Case%20of%20non-diffusion%20limited%20oxidation&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=David,%20Adelina&rft.date=2020-09-01&rft.volume=179&rft.spage=109294&rft.pages=109294-&rft.artnum=109294&rft.issn=0141-3910&rft.eissn=1873-2321&rft_id=info:doi/10.1016/j.polymdegradstab.2020.109294&rft_dat=%3Cproquest_hal_p%3E2449279676%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449279676&rft_id=info:pmid/&rft_els_id=S0141391020302263&rfr_iscdi=true |