A high pressure oxidation study of di-n-propyl ether

The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2020-03, Vol.263, p.116554, Article 116554
Hauptverfasser: Serinyel, Zeynep, Lailliau, Maxence, Dayma, Guillaume, Dagaut, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116554
container_title Fuel (Guildford)
container_volume 263
creator Serinyel, Zeynep
Lailliau, Maxence
Dayma, Guillaume
Dagaut, Philippe
description The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles were obtained through sonic probe sampling and gas chromatography and Fourier transform infrared spectrometry analyses. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on rules similar to those for the two symmetric ethers previously investigated (DEE and DBE). The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE.
doi_str_mv 10.1016/j.fuel.2019.116554
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02934437v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119319088</els_id><sourcerecordid>2352073825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-c4f337b843bb6b8d1d6db8544583e90a29c6d54a515b0979beee0e11aeefe83d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FTx5a89kP8LIsrisseNFzSJupTalNTdrF_femVDx6mYHheWfeeRG6JTghmKQPbVJP0CUUkyIhJBWCn6EVyTMWZ0Swc7TCgYopS8kluvK-xRhnueArxDdRYz6aaHDg_eQgst9Gq9HYPvLjpE-RrSNt4j4enB1OXQRjA-4aXdSq83Dz29fofff0tt3Hh9fnl-3mEFccp2OoNWNZmXNWlmmZa6JTXYarXOQMCqxoUaVacCWIKHGRFSUAYCBEAdSQM83W6H7Z26hODs58KneSVhm53xzkPMO0YJyz7EgCe7ewwejXBH6UrZ1cH-xJygTFGcupCBRdqMpZ7x3Uf2sJlnOSspVzknJOUi5JBtHjIoLw69GAk74y0FegjYNqlNqa_-Q_Df96cA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352073825</pqid></control><display><type>article</type><title>A high pressure oxidation study of di-n-propyl ether</title><source>Elsevier ScienceDirect Journals</source><creator>Serinyel, Zeynep ; Lailliau, Maxence ; Dayma, Guillaume ; Dagaut, Philippe</creator><creatorcontrib>Serinyel, Zeynep ; Lailliau, Maxence ; Dayma, Guillaume ; Dagaut, Philippe</creatorcontrib><description>The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles were obtained through sonic probe sampling and gas chromatography and Fourier transform infrared spectrometry analyses. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on rules similar to those for the two symmetric ethers previously investigated (DEE and DBE). The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.116554</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemical kinetics ; Chemical Sciences ; Di-n-propyl ether ; Diethyl ether ; Engineering Sciences ; Ethers ; Fourier transforms ; Gas chromatography ; High pressure ; Infrared analysis ; Jet-stirred reactor ; Low temperature ; Nuclear fuels ; or physical chemistry ; Organic chemistry ; Oxidation ; Reactive fluid environment ; Speciation ; Spectrometry ; Theoretical and</subject><ispartof>Fuel (Guildford), 2020-03, Vol.263, p.116554, Article 116554</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 1, 2020</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-c4f337b843bb6b8d1d6db8544583e90a29c6d54a515b0979beee0e11aeefe83d3</citedby><cites>FETCH-LOGICAL-c406t-c4f337b843bb6b8d1d6db8544583e90a29c6d54a515b0979beee0e11aeefe83d3</cites><orcidid>0000-0003-2761-657X ; 0000-0002-7758-3756 ; 0000-0003-4825-3288 ; 0000-0003-4712-090X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236119319088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02934437$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Serinyel, Zeynep</creatorcontrib><creatorcontrib>Lailliau, Maxence</creatorcontrib><creatorcontrib>Dayma, Guillaume</creatorcontrib><creatorcontrib>Dagaut, Philippe</creatorcontrib><title>A high pressure oxidation study of di-n-propyl ether</title><title>Fuel (Guildford)</title><description>The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles were obtained through sonic probe sampling and gas chromatography and Fourier transform infrared spectrometry analyses. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on rules similar to those for the two symmetric ethers previously investigated (DEE and DBE). The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE.</description><subject>Chemical kinetics</subject><subject>Chemical Sciences</subject><subject>Di-n-propyl ether</subject><subject>Diethyl ether</subject><subject>Engineering Sciences</subject><subject>Ethers</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>High pressure</subject><subject>Infrared analysis</subject><subject>Jet-stirred reactor</subject><subject>Low temperature</subject><subject>Nuclear fuels</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Reactive fluid environment</subject><subject>Speciation</subject><subject>Spectrometry</subject><subject>Theoretical and</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FTx5a89kP8LIsrisseNFzSJupTalNTdrF_femVDx6mYHheWfeeRG6JTghmKQPbVJP0CUUkyIhJBWCn6EVyTMWZ0Swc7TCgYopS8kluvK-xRhnueArxDdRYz6aaHDg_eQgst9Gq9HYPvLjpE-RrSNt4j4enB1OXQRjA-4aXdSq83Dz29fofff0tt3Hh9fnl-3mEFccp2OoNWNZmXNWlmmZa6JTXYarXOQMCqxoUaVacCWIKHGRFSUAYCBEAdSQM83W6H7Z26hODs58KneSVhm53xzkPMO0YJyz7EgCe7ewwejXBH6UrZ1cH-xJygTFGcupCBRdqMpZ7x3Uf2sJlnOSspVzknJOUi5JBtHjIoLw69GAk74y0FegjYNqlNqa_-Q_Df96cA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Serinyel, Zeynep</creator><creator>Lailliau, Maxence</creator><creator>Dayma, Guillaume</creator><creator>Dagaut, Philippe</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2761-657X</orcidid><orcidid>https://orcid.org/0000-0002-7758-3756</orcidid><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid><orcidid>https://orcid.org/0000-0003-4712-090X</orcidid></search><sort><creationdate>20200301</creationdate><title>A high pressure oxidation study of di-n-propyl ether</title><author>Serinyel, Zeynep ; Lailliau, Maxence ; Dayma, Guillaume ; Dagaut, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-c4f337b843bb6b8d1d6db8544583e90a29c6d54a515b0979beee0e11aeefe83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical kinetics</topic><topic>Chemical Sciences</topic><topic>Di-n-propyl ether</topic><topic>Diethyl ether</topic><topic>Engineering Sciences</topic><topic>Ethers</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>High pressure</topic><topic>Infrared analysis</topic><topic>Jet-stirred reactor</topic><topic>Low temperature</topic><topic>Nuclear fuels</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Reactive fluid environment</topic><topic>Speciation</topic><topic>Spectrometry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serinyel, Zeynep</creatorcontrib><creatorcontrib>Lailliau, Maxence</creatorcontrib><creatorcontrib>Dayma, Guillaume</creatorcontrib><creatorcontrib>Dagaut, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serinyel, Zeynep</au><au>Lailliau, Maxence</au><au>Dayma, Guillaume</au><au>Dagaut, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high pressure oxidation study of di-n-propyl ether</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>263</volume><spage>116554</spage><pages>116554-</pages><artnum>116554</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles were obtained through sonic probe sampling and gas chromatography and Fourier transform infrared spectrometry analyses. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on rules similar to those for the two symmetric ethers previously investigated (DEE and DBE). The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.116554</doi><orcidid>https://orcid.org/0000-0003-2761-657X</orcidid><orcidid>https://orcid.org/0000-0002-7758-3756</orcidid><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid><orcidid>https://orcid.org/0000-0003-4712-090X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2020-03, Vol.263, p.116554, Article 116554
issn 0016-2361
1873-7153
language eng
recordid cdi_hal_primary_oai_HAL_hal_02934437v1
source Elsevier ScienceDirect Journals
subjects Chemical kinetics
Chemical Sciences
Di-n-propyl ether
Diethyl ether
Engineering Sciences
Ethers
Fourier transforms
Gas chromatography
High pressure
Infrared analysis
Jet-stirred reactor
Low temperature
Nuclear fuels
or physical chemistry
Organic chemistry
Oxidation
Reactive fluid environment
Speciation
Spectrometry
Theoretical and
title A high pressure oxidation study of di-n-propyl ether
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20pressure%20oxidation%20study%20of%20di-n-propyl%20ether&rft.jtitle=Fuel%20(Guildford)&rft.au=Serinyel,%20Zeynep&rft.date=2020-03-01&rft.volume=263&rft.spage=116554&rft.pages=116554-&rft.artnum=116554&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.116554&rft_dat=%3Cproquest_hal_p%3E2352073825%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352073825&rft_id=info:pmid/&rft_els_id=S0016236119319088&rfr_iscdi=true