A high pressure oxidation study of di-n-propyl ether
The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The m...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2020-03, Vol.263, p.116554, Article 116554 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116554 |
container_title | Fuel (Guildford) |
container_volume | 263 |
creator | Serinyel, Zeynep Lailliau, Maxence Dayma, Guillaume Dagaut, Philippe |
description | The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles were obtained through sonic probe sampling and gas chromatography and Fourier transform infrared spectrometry analyses. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on rules similar to those for the two symmetric ethers previously investigated (DEE and DBE). The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE. |
doi_str_mv | 10.1016/j.fuel.2019.116554 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02934437v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119319088</els_id><sourcerecordid>2352073825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-c4f337b843bb6b8d1d6db8544583e90a29c6d54a515b0979beee0e11aeefe83d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FTx5a89kP8LIsrisseNFzSJupTalNTdrF_femVDx6mYHheWfeeRG6JTghmKQPbVJP0CUUkyIhJBWCn6EVyTMWZ0Swc7TCgYopS8kluvK-xRhnueArxDdRYz6aaHDg_eQgst9Gq9HYPvLjpE-RrSNt4j4enB1OXQRjA-4aXdSq83Dz29fofff0tt3Hh9fnl-3mEFccp2OoNWNZmXNWlmmZa6JTXYarXOQMCqxoUaVacCWIKHGRFSUAYCBEAdSQM83W6H7Z26hODs58KneSVhm53xzkPMO0YJyz7EgCe7ewwejXBH6UrZ1cH-xJygTFGcupCBRdqMpZ7x3Uf2sJlnOSspVzknJOUi5JBtHjIoLw69GAk74y0FegjYNqlNqa_-Q_Df96cA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352073825</pqid></control><display><type>article</type><title>A high pressure oxidation study of di-n-propyl ether</title><source>Elsevier ScienceDirect Journals</source><creator>Serinyel, Zeynep ; Lailliau, Maxence ; Dayma, Guillaume ; Dagaut, Philippe</creator><creatorcontrib>Serinyel, Zeynep ; Lailliau, Maxence ; Dayma, Guillaume ; Dagaut, Philippe</creatorcontrib><description>The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles were obtained through sonic probe sampling and gas chromatography and Fourier transform infrared spectrometry analyses. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on rules similar to those for the two symmetric ethers previously investigated (DEE and DBE). The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.116554</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemical kinetics ; Chemical Sciences ; Di-n-propyl ether ; Diethyl ether ; Engineering Sciences ; Ethers ; Fourier transforms ; Gas chromatography ; High pressure ; Infrared analysis ; Jet-stirred reactor ; Low temperature ; Nuclear fuels ; or physical chemistry ; Organic chemistry ; Oxidation ; Reactive fluid environment ; Speciation ; Spectrometry ; Theoretical and</subject><ispartof>Fuel (Guildford), 2020-03, Vol.263, p.116554, Article 116554</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 1, 2020</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-c4f337b843bb6b8d1d6db8544583e90a29c6d54a515b0979beee0e11aeefe83d3</citedby><cites>FETCH-LOGICAL-c406t-c4f337b843bb6b8d1d6db8544583e90a29c6d54a515b0979beee0e11aeefe83d3</cites><orcidid>0000-0003-2761-657X ; 0000-0002-7758-3756 ; 0000-0003-4825-3288 ; 0000-0003-4712-090X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236119319088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02934437$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Serinyel, Zeynep</creatorcontrib><creatorcontrib>Lailliau, Maxence</creatorcontrib><creatorcontrib>Dayma, Guillaume</creatorcontrib><creatorcontrib>Dagaut, Philippe</creatorcontrib><title>A high pressure oxidation study of di-n-propyl ether</title><title>Fuel (Guildford)</title><description>The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles were obtained through sonic probe sampling and gas chromatography and Fourier transform infrared spectrometry analyses. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on rules similar to those for the two symmetric ethers previously investigated (DEE and DBE). The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE.</description><subject>Chemical kinetics</subject><subject>Chemical Sciences</subject><subject>Di-n-propyl ether</subject><subject>Diethyl ether</subject><subject>Engineering Sciences</subject><subject>Ethers</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>High pressure</subject><subject>Infrared analysis</subject><subject>Jet-stirred reactor</subject><subject>Low temperature</subject><subject>Nuclear fuels</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Reactive fluid environment</subject><subject>Speciation</subject><subject>Spectrometry</subject><subject>Theoretical and</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FTx5a89kP8LIsrisseNFzSJupTalNTdrF_femVDx6mYHheWfeeRG6JTghmKQPbVJP0CUUkyIhJBWCn6EVyTMWZ0Swc7TCgYopS8kluvK-xRhnueArxDdRYz6aaHDg_eQgst9Gq9HYPvLjpE-RrSNt4j4enB1OXQRjA-4aXdSq83Dz29fofff0tt3Hh9fnl-3mEFccp2OoNWNZmXNWlmmZa6JTXYarXOQMCqxoUaVacCWIKHGRFSUAYCBEAdSQM83W6H7Z26hODs58KneSVhm53xzkPMO0YJyz7EgCe7ewwejXBH6UrZ1cH-xJygTFGcupCBRdqMpZ7x3Uf2sJlnOSspVzknJOUi5JBtHjIoLw69GAk74y0FegjYNqlNqa_-Q_Df96cA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Serinyel, Zeynep</creator><creator>Lailliau, Maxence</creator><creator>Dayma, Guillaume</creator><creator>Dagaut, Philippe</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2761-657X</orcidid><orcidid>https://orcid.org/0000-0002-7758-3756</orcidid><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid><orcidid>https://orcid.org/0000-0003-4712-090X</orcidid></search><sort><creationdate>20200301</creationdate><title>A high pressure oxidation study of di-n-propyl ether</title><author>Serinyel, Zeynep ; Lailliau, Maxence ; Dayma, Guillaume ; Dagaut, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-c4f337b843bb6b8d1d6db8544583e90a29c6d54a515b0979beee0e11aeefe83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical kinetics</topic><topic>Chemical Sciences</topic><topic>Di-n-propyl ether</topic><topic>Diethyl ether</topic><topic>Engineering Sciences</topic><topic>Ethers</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>High pressure</topic><topic>Infrared analysis</topic><topic>Jet-stirred reactor</topic><topic>Low temperature</topic><topic>Nuclear fuels</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Reactive fluid environment</topic><topic>Speciation</topic><topic>Spectrometry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serinyel, Zeynep</creatorcontrib><creatorcontrib>Lailliau, Maxence</creatorcontrib><creatorcontrib>Dayma, Guillaume</creatorcontrib><creatorcontrib>Dagaut, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serinyel, Zeynep</au><au>Lailliau, Maxence</au><au>Dayma, Guillaume</au><au>Dagaut, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high pressure oxidation study of di-n-propyl ether</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>263</volume><spage>116554</spage><pages>116554-</pages><artnum>116554</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles were obtained through sonic probe sampling and gas chromatography and Fourier transform infrared spectrometry analyses. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on rules similar to those for the two symmetric ethers previously investigated (DEE and DBE). The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.116554</doi><orcidid>https://orcid.org/0000-0003-2761-657X</orcidid><orcidid>https://orcid.org/0000-0002-7758-3756</orcidid><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid><orcidid>https://orcid.org/0000-0003-4712-090X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2020-03, Vol.263, p.116554, Article 116554 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02934437v1 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical kinetics Chemical Sciences Di-n-propyl ether Diethyl ether Engineering Sciences Ethers Fourier transforms Gas chromatography High pressure Infrared analysis Jet-stirred reactor Low temperature Nuclear fuels or physical chemistry Organic chemistry Oxidation Reactive fluid environment Speciation Spectrometry Theoretical and |
title | A high pressure oxidation study of di-n-propyl ether |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20pressure%20oxidation%20study%20of%20di-n-propyl%20ether&rft.jtitle=Fuel%20(Guildford)&rft.au=Serinyel,%20Zeynep&rft.date=2020-03-01&rft.volume=263&rft.spage=116554&rft.pages=116554-&rft.artnum=116554&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.116554&rft_dat=%3Cproquest_hal_p%3E2352073825%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352073825&rft_id=info:pmid/&rft_els_id=S0016236119319088&rfr_iscdi=true |