Turbulence in realistic geometries with moving boundaries: When simulations meet experiments
•Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments. Considering the current advances in experimental capabi...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2021-01, Vol.214, p.104750, Article 104750 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104750 |
container_title | Computers & fluids |
container_volume | 214 |
creator | Cappanera, L. Debue, P. Faller, H. Kuzzay, D. Saw, E-W. Nore, C. Guermond, J.-L. Daviaud, F. Wiertel-Gasquet, C. Dubrulle, B. |
description | •Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments.
Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re=O(102) to Re=O(105). In addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at Re=O(105) and beyond. |
doi_str_mv | 10.1016/j.compfluid.2020.104750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02928403v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793020303200</els_id><sourcerecordid>2476173546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-8d6febb470b7f28a4486e2cad7ac1aef955ed7872da7b60ad52896589e4d195e3</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BgOePHRN07RpvS2irrDgZcWLENJkupvSNmuSrvrvbans1dMwjzdvZj6ErmOyiEmc3dULZdt91fRGLyiho8p4Sk7QLM55ERHO-CmaEcLSiBcJOUcX3tdk6BPKZuhj07uyb6BTgE2HHcjG-GAU3oJtITgDHn-ZsMOtPZhui0vbd1qO8j1-30GHvWn7RgZjO49bgIDhew_OtNAFf4nOKtl4uPqrc_T29Lh5WEXr1-eXh-U6UoxmIcp1VkFZMk5KXtFcMpZnQJXUXKpYQlWkKWiec6olLzMidUrzIkvzApiOixSSObqdcneyEfthuXQ_wkojVsu1GDVCC5ozkhzo4L2ZvHtnP3vwQdS2d91wnqCMZzFPUpYNLj65lLPeO6iOsTERI3ZRiyN2MWIXE_ZhcjlNwvDwwYATXpkRrzYOVBDamn8zfgF5jJD_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476173546</pqid></control><display><type>article</type><title>Turbulence in realistic geometries with moving boundaries: When simulations meet experiments</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cappanera, L. ; Debue, P. ; Faller, H. ; Kuzzay, D. ; Saw, E-W. ; Nore, C. ; Guermond, J.-L. ; Daviaud, F. ; Wiertel-Gasquet, C. ; Dubrulle, B.</creator><creatorcontrib>Cappanera, L. ; Debue, P. ; Faller, H. ; Kuzzay, D. ; Saw, E-W. ; Nore, C. ; Guermond, J.-L. ; Daviaud, F. ; Wiertel-Gasquet, C. ; Dubrulle, B.</creatorcontrib><description>•Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments.
Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re=O(102) to Re=O(105). In addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at Re=O(105) and beyond.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2020.104750</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Bifurcation ; Computational fluid dynamics ; Direct numerical simulation ; Fluid flow ; Fluid mechanics ; Impellers ; Large eddy simulation ; Large eddy simulation model ; Mathematical models ; Mathematical Physics ; Mechanics ; Nonlinear Sciences ; Numerical methods ; Penalty method ; Physics ; Questions ; Reynolds number ; Simulation ; Topology ; Transition to turbulence ; Turbulence ; Turbulent flow</subject><ispartof>Computers & fluids, 2021-01, Vol.214, p.104750, Article 104750</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-8d6febb470b7f28a4486e2cad7ac1aef955ed7872da7b60ad52896589e4d195e3</citedby><cites>FETCH-LOGICAL-c426t-8d6febb470b7f28a4486e2cad7ac1aef955ed7872da7b60ad52896589e4d195e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2020.104750$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02928403$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cappanera, L.</creatorcontrib><creatorcontrib>Debue, P.</creatorcontrib><creatorcontrib>Faller, H.</creatorcontrib><creatorcontrib>Kuzzay, D.</creatorcontrib><creatorcontrib>Saw, E-W.</creatorcontrib><creatorcontrib>Nore, C.</creatorcontrib><creatorcontrib>Guermond, J.-L.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Wiertel-Gasquet, C.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><title>Turbulence in realistic geometries with moving boundaries: When simulations meet experiments</title><title>Computers & fluids</title><description>•Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments.
Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re=O(102) to Re=O(105). In addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at Re=O(105) and beyond.</description><subject>Bifurcation</subject><subject>Computational fluid dynamics</subject><subject>Direct numerical simulation</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Impellers</subject><subject>Large eddy simulation</subject><subject>Large eddy simulation model</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mechanics</subject><subject>Nonlinear Sciences</subject><subject>Numerical methods</subject><subject>Penalty method</subject><subject>Physics</subject><subject>Questions</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Topology</subject><subject>Transition to turbulence</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BgOePHRN07RpvS2irrDgZcWLENJkupvSNmuSrvrvbans1dMwjzdvZj6ErmOyiEmc3dULZdt91fRGLyiho8p4Sk7QLM55ERHO-CmaEcLSiBcJOUcX3tdk6BPKZuhj07uyb6BTgE2HHcjG-GAU3oJtITgDHn-ZsMOtPZhui0vbd1qO8j1-30GHvWn7RgZjO49bgIDhew_OtNAFf4nOKtl4uPqrc_T29Lh5WEXr1-eXh-U6UoxmIcp1VkFZMk5KXtFcMpZnQJXUXKpYQlWkKWiec6olLzMidUrzIkvzApiOixSSObqdcneyEfthuXQ_wkojVsu1GDVCC5ozkhzo4L2ZvHtnP3vwQdS2d91wnqCMZzFPUpYNLj65lLPeO6iOsTERI3ZRiyN2MWIXE_ZhcjlNwvDwwYATXpkRrzYOVBDamn8zfgF5jJD_</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Cappanera, L.</creator><creator>Debue, P.</creator><creator>Faller, H.</creator><creator>Kuzzay, D.</creator><creator>Saw, E-W.</creator><creator>Nore, C.</creator><creator>Guermond, J.-L.</creator><creator>Daviaud, F.</creator><creator>Wiertel-Gasquet, C.</creator><creator>Dubrulle, B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20210115</creationdate><title>Turbulence in realistic geometries with moving boundaries: When simulations meet experiments</title><author>Cappanera, L. ; Debue, P. ; Faller, H. ; Kuzzay, D. ; Saw, E-W. ; Nore, C. ; Guermond, J.-L. ; Daviaud, F. ; Wiertel-Gasquet, C. ; Dubrulle, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-8d6febb470b7f28a4486e2cad7ac1aef955ed7872da7b60ad52896589e4d195e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bifurcation</topic><topic>Computational fluid dynamics</topic><topic>Direct numerical simulation</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Impellers</topic><topic>Large eddy simulation</topic><topic>Large eddy simulation model</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mechanics</topic><topic>Nonlinear Sciences</topic><topic>Numerical methods</topic><topic>Penalty method</topic><topic>Physics</topic><topic>Questions</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Topology</topic><topic>Transition to turbulence</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cappanera, L.</creatorcontrib><creatorcontrib>Debue, P.</creatorcontrib><creatorcontrib>Faller, H.</creatorcontrib><creatorcontrib>Kuzzay, D.</creatorcontrib><creatorcontrib>Saw, E-W.</creatorcontrib><creatorcontrib>Nore, C.</creatorcontrib><creatorcontrib>Guermond, J.-L.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Wiertel-Gasquet, C.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cappanera, L.</au><au>Debue, P.</au><au>Faller, H.</au><au>Kuzzay, D.</au><au>Saw, E-W.</au><au>Nore, C.</au><au>Guermond, J.-L.</au><au>Daviaud, F.</au><au>Wiertel-Gasquet, C.</au><au>Dubrulle, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence in realistic geometries with moving boundaries: When simulations meet experiments</atitle><jtitle>Computers & fluids</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>214</volume><spage>104750</spage><pages>104750-</pages><artnum>104750</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments.
Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re=O(102) to Re=O(105). In addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at Re=O(105) and beyond.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2020.104750</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2021-01, Vol.214, p.104750, Article 104750 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02928403v2 |
source | Access via ScienceDirect (Elsevier) |
subjects | Bifurcation Computational fluid dynamics Direct numerical simulation Fluid flow Fluid mechanics Impellers Large eddy simulation Large eddy simulation model Mathematical models Mathematical Physics Mechanics Nonlinear Sciences Numerical methods Penalty method Physics Questions Reynolds number Simulation Topology Transition to turbulence Turbulence Turbulent flow |
title | Turbulence in realistic geometries with moving boundaries: When simulations meet experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20in%20realistic%20geometries%20with%20moving%20boundaries:%20When%20simulations%20meet%20experiments&rft.jtitle=Computers%20&%20fluids&rft.au=Cappanera,%20L.&rft.date=2021-01-15&rft.volume=214&rft.spage=104750&rft.pages=104750-&rft.artnum=104750&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2020.104750&rft_dat=%3Cproquest_hal_p%3E2476173546%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476173546&rft_id=info:pmid/&rft_els_id=S0045793020303200&rfr_iscdi=true |