Turbulence in realistic geometries with moving boundaries: When simulations meet experiments

•Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments. Considering the current advances in experimental capabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2021-01, Vol.214, p.104750, Article 104750
Hauptverfasser: Cappanera, L., Debue, P., Faller, H., Kuzzay, D., Saw, E-W., Nore, C., Guermond, J.-L., Daviaud, F., Wiertel-Gasquet, C., Dubrulle, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104750
container_title Computers & fluids
container_volume 214
creator Cappanera, L.
Debue, P.
Faller, H.
Kuzzay, D.
Saw, E-W.
Nore, C.
Guermond, J.-L.
Daviaud, F.
Wiertel-Gasquet, C.
Dubrulle, B.
description •Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments. Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re=O(102) to Re=O(105). In addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at Re=O(105) and beyond.
doi_str_mv 10.1016/j.compfluid.2020.104750
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02928403v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793020303200</els_id><sourcerecordid>2476173546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-8d6febb470b7f28a4486e2cad7ac1aef955ed7872da7b60ad52896589e4d195e3</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BgOePHRN07RpvS2irrDgZcWLENJkupvSNmuSrvrvbans1dMwjzdvZj6ErmOyiEmc3dULZdt91fRGLyiho8p4Sk7QLM55ERHO-CmaEcLSiBcJOUcX3tdk6BPKZuhj07uyb6BTgE2HHcjG-GAU3oJtITgDHn-ZsMOtPZhui0vbd1qO8j1-30GHvWn7RgZjO49bgIDhew_OtNAFf4nOKtl4uPqrc_T29Lh5WEXr1-eXh-U6UoxmIcp1VkFZMk5KXtFcMpZnQJXUXKpYQlWkKWiec6olLzMidUrzIkvzApiOixSSObqdcneyEfthuXQ_wkojVsu1GDVCC5ozkhzo4L2ZvHtnP3vwQdS2d91wnqCMZzFPUpYNLj65lLPeO6iOsTERI3ZRiyN2MWIXE_ZhcjlNwvDwwYATXpkRrzYOVBDamn8zfgF5jJD_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476173546</pqid></control><display><type>article</type><title>Turbulence in realistic geometries with moving boundaries: When simulations meet experiments</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cappanera, L. ; Debue, P. ; Faller, H. ; Kuzzay, D. ; Saw, E-W. ; Nore, C. ; Guermond, J.-L. ; Daviaud, F. ; Wiertel-Gasquet, C. ; Dubrulle, B.</creator><creatorcontrib>Cappanera, L. ; Debue, P. ; Faller, H. ; Kuzzay, D. ; Saw, E-W. ; Nore, C. ; Guermond, J.-L. ; Daviaud, F. ; Wiertel-Gasquet, C. ; Dubrulle, B.</creatorcontrib><description>•Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments. Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re=O(102) to Re=O(105). In addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at Re=O(105) and beyond.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2020.104750</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Bifurcation ; Computational fluid dynamics ; Direct numerical simulation ; Fluid flow ; Fluid mechanics ; Impellers ; Large eddy simulation ; Large eddy simulation model ; Mathematical models ; Mathematical Physics ; Mechanics ; Nonlinear Sciences ; Numerical methods ; Penalty method ; Physics ; Questions ; Reynolds number ; Simulation ; Topology ; Transition to turbulence ; Turbulence ; Turbulent flow</subject><ispartof>Computers &amp; fluids, 2021-01, Vol.214, p.104750, Article 104750</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-8d6febb470b7f28a4486e2cad7ac1aef955ed7872da7b60ad52896589e4d195e3</citedby><cites>FETCH-LOGICAL-c426t-8d6febb470b7f28a4486e2cad7ac1aef955ed7872da7b60ad52896589e4d195e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2020.104750$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02928403$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cappanera, L.</creatorcontrib><creatorcontrib>Debue, P.</creatorcontrib><creatorcontrib>Faller, H.</creatorcontrib><creatorcontrib>Kuzzay, D.</creatorcontrib><creatorcontrib>Saw, E-W.</creatorcontrib><creatorcontrib>Nore, C.</creatorcontrib><creatorcontrib>Guermond, J.-L.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Wiertel-Gasquet, C.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><title>Turbulence in realistic geometries with moving boundaries: When simulations meet experiments</title><title>Computers &amp; fluids</title><description>•Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments. Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re=O(102) to Re=O(105). In addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at Re=O(105) and beyond.</description><subject>Bifurcation</subject><subject>Computational fluid dynamics</subject><subject>Direct numerical simulation</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Impellers</subject><subject>Large eddy simulation</subject><subject>Large eddy simulation model</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mechanics</subject><subject>Nonlinear Sciences</subject><subject>Numerical methods</subject><subject>Penalty method</subject><subject>Physics</subject><subject>Questions</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Topology</subject><subject>Transition to turbulence</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BgOePHRN07RpvS2irrDgZcWLENJkupvSNmuSrvrvbans1dMwjzdvZj6ErmOyiEmc3dULZdt91fRGLyiho8p4Sk7QLM55ERHO-CmaEcLSiBcJOUcX3tdk6BPKZuhj07uyb6BTgE2HHcjG-GAU3oJtITgDHn-ZsMOtPZhui0vbd1qO8j1-30GHvWn7RgZjO49bgIDhew_OtNAFf4nOKtl4uPqrc_T29Lh5WEXr1-eXh-U6UoxmIcp1VkFZMk5KXtFcMpZnQJXUXKpYQlWkKWiec6olLzMidUrzIkvzApiOixSSObqdcneyEfthuXQ_wkojVsu1GDVCC5ozkhzo4L2ZvHtnP3vwQdS2d91wnqCMZzFPUpYNLj65lLPeO6iOsTERI3ZRiyN2MWIXE_ZhcjlNwvDwwYATXpkRrzYOVBDamn8zfgF5jJD_</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Cappanera, L.</creator><creator>Debue, P.</creator><creator>Faller, H.</creator><creator>Kuzzay, D.</creator><creator>Saw, E-W.</creator><creator>Nore, C.</creator><creator>Guermond, J.-L.</creator><creator>Daviaud, F.</creator><creator>Wiertel-Gasquet, C.</creator><creator>Dubrulle, B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20210115</creationdate><title>Turbulence in realistic geometries with moving boundaries: When simulations meet experiments</title><author>Cappanera, L. ; Debue, P. ; Faller, H. ; Kuzzay, D. ; Saw, E-W. ; Nore, C. ; Guermond, J.-L. ; Daviaud, F. ; Wiertel-Gasquet, C. ; Dubrulle, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-8d6febb470b7f28a4486e2cad7ac1aef955ed7872da7b60ad52896589e4d195e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bifurcation</topic><topic>Computational fluid dynamics</topic><topic>Direct numerical simulation</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Impellers</topic><topic>Large eddy simulation</topic><topic>Large eddy simulation model</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mechanics</topic><topic>Nonlinear Sciences</topic><topic>Numerical methods</topic><topic>Penalty method</topic><topic>Physics</topic><topic>Questions</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Topology</topic><topic>Transition to turbulence</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cappanera, L.</creatorcontrib><creatorcontrib>Debue, P.</creatorcontrib><creatorcontrib>Faller, H.</creatorcontrib><creatorcontrib>Kuzzay, D.</creatorcontrib><creatorcontrib>Saw, E-W.</creatorcontrib><creatorcontrib>Nore, C.</creatorcontrib><creatorcontrib>Guermond, J.-L.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Wiertel-Gasquet, C.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cappanera, L.</au><au>Debue, P.</au><au>Faller, H.</au><au>Kuzzay, D.</au><au>Saw, E-W.</au><au>Nore, C.</au><au>Guermond, J.-L.</au><au>Daviaud, F.</au><au>Wiertel-Gasquet, C.</au><au>Dubrulle, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence in realistic geometries with moving boundaries: When simulations meet experiments</atitle><jtitle>Computers &amp; fluids</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>214</volume><spage>104750</spage><pages>104750-</pages><artnum>104750</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Bifurcation and Transition to Turbulence in Von Karman flow.•entropy viscosity Large Eddy Simulation model.•penalty method for moving solid obstacle in computational fluid dynamics.•Comparisons numerical simulations and laboratory experiments. Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re=O(102) to Re=O(105). In addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at Re=O(105) and beyond.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2020.104750</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2021-01, Vol.214, p.104750, Article 104750
issn 0045-7930
1879-0747
language eng
recordid cdi_hal_primary_oai_HAL_hal_02928403v2
source Access via ScienceDirect (Elsevier)
subjects Bifurcation
Computational fluid dynamics
Direct numerical simulation
Fluid flow
Fluid mechanics
Impellers
Large eddy simulation
Large eddy simulation model
Mathematical models
Mathematical Physics
Mechanics
Nonlinear Sciences
Numerical methods
Penalty method
Physics
Questions
Reynolds number
Simulation
Topology
Transition to turbulence
Turbulence
Turbulent flow
title Turbulence in realistic geometries with moving boundaries: When simulations meet experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20in%20realistic%20geometries%20with%20moving%20boundaries:%20When%20simulations%20meet%20experiments&rft.jtitle=Computers%20&%20fluids&rft.au=Cappanera,%20L.&rft.date=2021-01-15&rft.volume=214&rft.spage=104750&rft.pages=104750-&rft.artnum=104750&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2020.104750&rft_dat=%3Cproquest_hal_p%3E2476173546%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476173546&rft_id=info:pmid/&rft_els_id=S0045793020303200&rfr_iscdi=true