Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow
Observations with the Herschel Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2020-09, Vol.641, p.A17 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A17 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 641 |
creator | Bonne, L. Schneider, N. Bontemps, S. Clarke, S. D. Gusdorf, A. Lehmann, A. Steinke, M. Csengeri, T. Kabanovic, S. Simon, R. Buchbender, C. Güsten, R. |
description | Observations with the
Herschel
Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the
12
CO(4→3),
12
CO(3→2), and various CO(2–1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C
II
] line at 158
μ
m and the [O
I
] line at 63
μ
m, observed with the upGREAT receiver on SOFIA, as well as a weak [C
I
] 609
μ
m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures. |
doi_str_mv | 10.1051/0004-6361/201937104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02927688v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487161803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c463cbe7fdd50df08eaac7e3a5bdce6871b1861f9b5b27a8711dc19c8cf83ad43</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwBWwssWIR6kfiOMuqPIpUxAbWxvGjdZXawU5A_D0JQd3MaGaOrkYHgGuM7jAq8AIhlGeMMrwgCFe0xCg_ATOcU5KhMmenYHYkzsFFSvthJJjTGfi4Nz4ZuJUJ2hAPsnPBQ-dhtzPwpU9KQusaeTC-g7o3sAt_F-1Scu0EBwslTH1rYgreKaiC_zJx6_wW2iZ8X4IzK5tkrv77HLw_Pryt1tnm9el5tdxkKiekGyqjqjal1bpA2iJupFSlobKotTKMl7jGnGFb1UVNSjnMWCtcKa4sp1LndA5up9ydbEQb3UHGHxGkE-vlRow7RCpSMs6_8MDeTGwbw2dvUif2oY9-eE-QfIhmmCM6UHSiVAwpRWOPsRiJUbsYpYpRqjhqp78bvHVb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487161803</pqid></control><display><type>article</type><title>Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bonne, L. ; Schneider, N. ; Bontemps, S. ; Clarke, S. D. ; Gusdorf, A. ; Lehmann, A. ; Steinke, M. ; Csengeri, T. ; Kabanovic, S. ; Simon, R. ; Buchbender, C. ; Güsten, R.</creator><creatorcontrib>Bonne, L. ; Schneider, N. ; Bontemps, S. ; Clarke, S. D. ; Gusdorf, A. ; Lehmann, A. ; Steinke, M. ; Csengeri, T. ; Kabanovic, S. ; Simon, R. ; Buchbender, C. ; Güsten, R.</creatorcontrib><description>Observations with the
Herschel
Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the
12
CO(4→3),
12
CO(3→2), and various CO(2–1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C
II
] line at 158
μ
m and the [O
I
] line at 63
μ
m, observed with the upGREAT receiver on SOFIA, as well as a weak [C
I
] 609
μ
m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201937104</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Apexes ; Astrophysics ; Carbon monoxide ; Convergence ; Deposition ; Energy dissipation ; Excitation ; Filaments ; Gas formation ; Interstellar matter ; Kinetic energy ; Mathematical models ; Photodissociation ; Physics ; Space telescopes ; Star formation</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-09, Vol.641, p.A17</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c463cbe7fdd50df08eaac7e3a5bdce6871b1861f9b5b27a8711dc19c8cf83ad43</citedby><cites>FETCH-LOGICAL-c422t-c463cbe7fdd50df08eaac7e3a5bdce6871b1861f9b5b27a8711dc19c8cf83ad43</cites><orcidid>0000-0002-4093-7178 ; 0000-0002-6018-1371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02927688$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonne, L.</creatorcontrib><creatorcontrib>Schneider, N.</creatorcontrib><creatorcontrib>Bontemps, S.</creatorcontrib><creatorcontrib>Clarke, S. D.</creatorcontrib><creatorcontrib>Gusdorf, A.</creatorcontrib><creatorcontrib>Lehmann, A.</creatorcontrib><creatorcontrib>Steinke, M.</creatorcontrib><creatorcontrib>Csengeri, T.</creatorcontrib><creatorcontrib>Kabanovic, S.</creatorcontrib><creatorcontrib>Simon, R.</creatorcontrib><creatorcontrib>Buchbender, C.</creatorcontrib><creatorcontrib>Güsten, R.</creatorcontrib><title>Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow</title><title>Astronomy and astrophysics (Berlin)</title><description>Observations with the
Herschel
Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the
12
CO(4→3),
12
CO(3→2), and various CO(2–1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C
II
] line at 158
μ
m and the [O
I
] line at 63
μ
m, observed with the upGREAT receiver on SOFIA, as well as a weak [C
I
] 609
μ
m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.</description><subject>Apexes</subject><subject>Astrophysics</subject><subject>Carbon monoxide</subject><subject>Convergence</subject><subject>Deposition</subject><subject>Energy dissipation</subject><subject>Excitation</subject><subject>Filaments</subject><subject>Gas formation</subject><subject>Interstellar matter</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Photodissociation</subject><subject>Physics</subject><subject>Space telescopes</subject><subject>Star formation</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwBWwssWIR6kfiOMuqPIpUxAbWxvGjdZXawU5A_D0JQd3MaGaOrkYHgGuM7jAq8AIhlGeMMrwgCFe0xCg_ATOcU5KhMmenYHYkzsFFSvthJJjTGfi4Nz4ZuJUJ2hAPsnPBQ-dhtzPwpU9KQusaeTC-g7o3sAt_F-1Scu0EBwslTH1rYgreKaiC_zJx6_wW2iZ8X4IzK5tkrv77HLw_Pryt1tnm9el5tdxkKiekGyqjqjal1bpA2iJupFSlobKotTKMl7jGnGFb1UVNSjnMWCtcKa4sp1LndA5up9ydbEQb3UHGHxGkE-vlRow7RCpSMs6_8MDeTGwbw2dvUif2oY9-eE-QfIhmmCM6UHSiVAwpRWOPsRiJUbsYpYpRqjhqp78bvHVb</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bonne, L.</creator><creator>Schneider, N.</creator><creator>Bontemps, S.</creator><creator>Clarke, S. D.</creator><creator>Gusdorf, A.</creator><creator>Lehmann, A.</creator><creator>Steinke, M.</creator><creator>Csengeri, T.</creator><creator>Kabanovic, S.</creator><creator>Simon, R.</creator><creator>Buchbender, C.</creator><creator>Güsten, R.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4093-7178</orcidid><orcidid>https://orcid.org/0000-0002-6018-1371</orcidid></search><sort><creationdate>20200901</creationdate><title>Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow</title><author>Bonne, L. ; Schneider, N. ; Bontemps, S. ; Clarke, S. D. ; Gusdorf, A. ; Lehmann, A. ; Steinke, M. ; Csengeri, T. ; Kabanovic, S. ; Simon, R. ; Buchbender, C. ; Güsten, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c463cbe7fdd50df08eaac7e3a5bdce6871b1861f9b5b27a8711dc19c8cf83ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Astrophysics</topic><topic>Carbon monoxide</topic><topic>Convergence</topic><topic>Deposition</topic><topic>Energy dissipation</topic><topic>Excitation</topic><topic>Filaments</topic><topic>Gas formation</topic><topic>Interstellar matter</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Photodissociation</topic><topic>Physics</topic><topic>Space telescopes</topic><topic>Star formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonne, L.</creatorcontrib><creatorcontrib>Schneider, N.</creatorcontrib><creatorcontrib>Bontemps, S.</creatorcontrib><creatorcontrib>Clarke, S. D.</creatorcontrib><creatorcontrib>Gusdorf, A.</creatorcontrib><creatorcontrib>Lehmann, A.</creatorcontrib><creatorcontrib>Steinke, M.</creatorcontrib><creatorcontrib>Csengeri, T.</creatorcontrib><creatorcontrib>Kabanovic, S.</creatorcontrib><creatorcontrib>Simon, R.</creatorcontrib><creatorcontrib>Buchbender, C.</creatorcontrib><creatorcontrib>Güsten, R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonne, L.</au><au>Schneider, N.</au><au>Bontemps, S.</au><au>Clarke, S. D.</au><au>Gusdorf, A.</au><au>Lehmann, A.</au><au>Steinke, M.</au><au>Csengeri, T.</au><au>Kabanovic, S.</au><au>Simon, R.</au><au>Buchbender, C.</au><au>Güsten, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>641</volume><spage>A17</spage><pages>A17-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Observations with the
Herschel
Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the
12
CO(4→3),
12
CO(3→2), and various CO(2–1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C
II
] line at 158
μ
m and the [O
I
] line at 63
μ
m, observed with the upGREAT receiver on SOFIA, as well as a weak [C
I
] 609
μ
m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201937104</doi><orcidid>https://orcid.org/0000-0002-4093-7178</orcidid><orcidid>https://orcid.org/0000-0002-6018-1371</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2020-09, Vol.641, p.A17 |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02927688v1 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Apexes Astrophysics Carbon monoxide Convergence Deposition Energy dissipation Excitation Filaments Gas formation Interstellar matter Kinetic energy Mathematical models Photodissociation Physics Space telescopes Star formation |
title | Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dense%20gas%20formation%20in%20the%20Musca%20filament%20due%20to%20the%20dissipation%20of%20a%20supersonic%20converging%20flow&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bonne,%20L.&rft.date=2020-09-01&rft.volume=641&rft.spage=A17&rft.pages=A17-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201937104&rft_dat=%3Cproquest_hal_p%3E2487161803%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487161803&rft_id=info:pmid/&rfr_iscdi=true |