Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow

Observations with the Herschel Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-09, Vol.641, p.A17
Hauptverfasser: Bonne, L., Schneider, N., Bontemps, S., Clarke, S. D., Gusdorf, A., Lehmann, A., Steinke, M., Csengeri, T., Kabanovic, S., Simon, R., Buchbender, C., Güsten, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A17
container_title Astronomy and astrophysics (Berlin)
container_volume 641
creator Bonne, L.
Schneider, N.
Bontemps, S.
Clarke, S. D.
Gusdorf, A.
Lehmann, A.
Steinke, M.
Csengeri, T.
Kabanovic, S.
Simon, R.
Buchbender, C.
Güsten, R.
description Observations with the Herschel Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the 12 CO(4→3), 12 CO(3→2), and various CO(2–1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C  II ] line at 158 μ m and the [O  I ] line at 63 μ m, observed with the upGREAT receiver on SOFIA, as well as a weak [C  I ] 609 μ m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.
doi_str_mv 10.1051/0004-6361/201937104
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02927688v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487161803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c463cbe7fdd50df08eaac7e3a5bdce6871b1861f9b5b27a8711dc19c8cf83ad43</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwBWwssWIR6kfiOMuqPIpUxAbWxvGjdZXawU5A_D0JQd3MaGaOrkYHgGuM7jAq8AIhlGeMMrwgCFe0xCg_ATOcU5KhMmenYHYkzsFFSvthJJjTGfi4Nz4ZuJUJ2hAPsnPBQ-dhtzPwpU9KQusaeTC-g7o3sAt_F-1Scu0EBwslTH1rYgreKaiC_zJx6_wW2iZ8X4IzK5tkrv77HLw_Pryt1tnm9el5tdxkKiekGyqjqjal1bpA2iJupFSlobKotTKMl7jGnGFb1UVNSjnMWCtcKa4sp1LndA5up9ydbEQb3UHGHxGkE-vlRow7RCpSMs6_8MDeTGwbw2dvUif2oY9-eE-QfIhmmCM6UHSiVAwpRWOPsRiJUbsYpYpRqjhqp78bvHVb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487161803</pqid></control><display><type>article</type><title>Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bonne, L. ; Schneider, N. ; Bontemps, S. ; Clarke, S. D. ; Gusdorf, A. ; Lehmann, A. ; Steinke, M. ; Csengeri, T. ; Kabanovic, S. ; Simon, R. ; Buchbender, C. ; Güsten, R.</creator><creatorcontrib>Bonne, L. ; Schneider, N. ; Bontemps, S. ; Clarke, S. D. ; Gusdorf, A. ; Lehmann, A. ; Steinke, M. ; Csengeri, T. ; Kabanovic, S. ; Simon, R. ; Buchbender, C. ; Güsten, R.</creatorcontrib><description>Observations with the Herschel Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the 12 CO(4→3), 12 CO(3→2), and various CO(2–1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C  II ] line at 158 μ m and the [O  I ] line at 63 μ m, observed with the upGREAT receiver on SOFIA, as well as a weak [C  I ] 609 μ m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201937104</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Apexes ; Astrophysics ; Carbon monoxide ; Convergence ; Deposition ; Energy dissipation ; Excitation ; Filaments ; Gas formation ; Interstellar matter ; Kinetic energy ; Mathematical models ; Photodissociation ; Physics ; Space telescopes ; Star formation</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-09, Vol.641, p.A17</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c463cbe7fdd50df08eaac7e3a5bdce6871b1861f9b5b27a8711dc19c8cf83ad43</citedby><cites>FETCH-LOGICAL-c422t-c463cbe7fdd50df08eaac7e3a5bdce6871b1861f9b5b27a8711dc19c8cf83ad43</cites><orcidid>0000-0002-4093-7178 ; 0000-0002-6018-1371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02927688$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonne, L.</creatorcontrib><creatorcontrib>Schneider, N.</creatorcontrib><creatorcontrib>Bontemps, S.</creatorcontrib><creatorcontrib>Clarke, S. D.</creatorcontrib><creatorcontrib>Gusdorf, A.</creatorcontrib><creatorcontrib>Lehmann, A.</creatorcontrib><creatorcontrib>Steinke, M.</creatorcontrib><creatorcontrib>Csengeri, T.</creatorcontrib><creatorcontrib>Kabanovic, S.</creatorcontrib><creatorcontrib>Simon, R.</creatorcontrib><creatorcontrib>Buchbender, C.</creatorcontrib><creatorcontrib>Güsten, R.</creatorcontrib><title>Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow</title><title>Astronomy and astrophysics (Berlin)</title><description>Observations with the Herschel Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the 12 CO(4→3), 12 CO(3→2), and various CO(2–1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C  II ] line at 158 μ m and the [O  I ] line at 63 μ m, observed with the upGREAT receiver on SOFIA, as well as a weak [C  I ] 609 μ m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.</description><subject>Apexes</subject><subject>Astrophysics</subject><subject>Carbon monoxide</subject><subject>Convergence</subject><subject>Deposition</subject><subject>Energy dissipation</subject><subject>Excitation</subject><subject>Filaments</subject><subject>Gas formation</subject><subject>Interstellar matter</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Photodissociation</subject><subject>Physics</subject><subject>Space telescopes</subject><subject>Star formation</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwBWwssWIR6kfiOMuqPIpUxAbWxvGjdZXawU5A_D0JQd3MaGaOrkYHgGuM7jAq8AIhlGeMMrwgCFe0xCg_ATOcU5KhMmenYHYkzsFFSvthJJjTGfi4Nz4ZuJUJ2hAPsnPBQ-dhtzPwpU9KQusaeTC-g7o3sAt_F-1Scu0EBwslTH1rYgreKaiC_zJx6_wW2iZ8X4IzK5tkrv77HLw_Pryt1tnm9el5tdxkKiekGyqjqjal1bpA2iJupFSlobKotTKMl7jGnGFb1UVNSjnMWCtcKa4sp1LndA5up9ydbEQb3UHGHxGkE-vlRow7RCpSMs6_8MDeTGwbw2dvUif2oY9-eE-QfIhmmCM6UHSiVAwpRWOPsRiJUbsYpYpRqjhqp78bvHVb</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bonne, L.</creator><creator>Schneider, N.</creator><creator>Bontemps, S.</creator><creator>Clarke, S. D.</creator><creator>Gusdorf, A.</creator><creator>Lehmann, A.</creator><creator>Steinke, M.</creator><creator>Csengeri, T.</creator><creator>Kabanovic, S.</creator><creator>Simon, R.</creator><creator>Buchbender, C.</creator><creator>Güsten, R.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4093-7178</orcidid><orcidid>https://orcid.org/0000-0002-6018-1371</orcidid></search><sort><creationdate>20200901</creationdate><title>Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow</title><author>Bonne, L. ; Schneider, N. ; Bontemps, S. ; Clarke, S. D. ; Gusdorf, A. ; Lehmann, A. ; Steinke, M. ; Csengeri, T. ; Kabanovic, S. ; Simon, R. ; Buchbender, C. ; Güsten, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c463cbe7fdd50df08eaac7e3a5bdce6871b1861f9b5b27a8711dc19c8cf83ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Astrophysics</topic><topic>Carbon monoxide</topic><topic>Convergence</topic><topic>Deposition</topic><topic>Energy dissipation</topic><topic>Excitation</topic><topic>Filaments</topic><topic>Gas formation</topic><topic>Interstellar matter</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Photodissociation</topic><topic>Physics</topic><topic>Space telescopes</topic><topic>Star formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonne, L.</creatorcontrib><creatorcontrib>Schneider, N.</creatorcontrib><creatorcontrib>Bontemps, S.</creatorcontrib><creatorcontrib>Clarke, S. D.</creatorcontrib><creatorcontrib>Gusdorf, A.</creatorcontrib><creatorcontrib>Lehmann, A.</creatorcontrib><creatorcontrib>Steinke, M.</creatorcontrib><creatorcontrib>Csengeri, T.</creatorcontrib><creatorcontrib>Kabanovic, S.</creatorcontrib><creatorcontrib>Simon, R.</creatorcontrib><creatorcontrib>Buchbender, C.</creatorcontrib><creatorcontrib>Güsten, R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonne, L.</au><au>Schneider, N.</au><au>Bontemps, S.</au><au>Clarke, S. D.</au><au>Gusdorf, A.</au><au>Lehmann, A.</au><au>Steinke, M.</au><au>Csengeri, T.</au><au>Kabanovic, S.</au><au>Simon, R.</au><au>Buchbender, C.</au><au>Güsten, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>641</volume><spage>A17</spage><pages>A17-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Observations with the Herschel Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the 12 CO(4→3), 12 CO(3→2), and various CO(2–1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C  II ] line at 158 μ m and the [O  I ] line at 63 μ m, observed with the upGREAT receiver on SOFIA, as well as a weak [C  I ] 609 μ m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201937104</doi><orcidid>https://orcid.org/0000-0002-4093-7178</orcidid><orcidid>https://orcid.org/0000-0002-6018-1371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-09, Vol.641, p.A17
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_02927688v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Apexes
Astrophysics
Carbon monoxide
Convergence
Deposition
Energy dissipation
Excitation
Filaments
Gas formation
Interstellar matter
Kinetic energy
Mathematical models
Photodissociation
Physics
Space telescopes
Star formation
title Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dense%20gas%20formation%20in%20the%20Musca%20filament%20due%20to%20the%20dissipation%20of%20a%20supersonic%20converging%20flow&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bonne,%20L.&rft.date=2020-09-01&rft.volume=641&rft.spage=A17&rft.pages=A17-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201937104&rft_dat=%3Cproquest_hal_p%3E2487161803%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487161803&rft_id=info:pmid/&rfr_iscdi=true