On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU
This study proposes a thorough investigation, especially based on thermodynamics, to predict phase separation in a linear thermoplastic polyurethane, denoted TPU, prepared from fatty acid-based soft segments and MDI (4,4′-methylene bis(phenyl isocyanate))/BDO (1,4-butanediol) hard segments and speci...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2020-10, Vol.207, p.122882, Article 122882 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122882 |
container_title | Polymer (Guilford) |
container_volume | 207 |
creator | Gallu, Raïssa Méchin, Françoise Dalmas, Florent Gérard, Jean-François Perrin, Rémi Loup, Frédéric |
description | This study proposes a thorough investigation, especially based on thermodynamics, to predict phase separation in a linear thermoplastic polyurethane, denoted TPU, prepared from fatty acid-based soft segments and MDI (4,4′-methylene bis(phenyl isocyanate))/BDO (1,4-butanediol) hard segments and specially designed for bitumen modification. Hansen’ solubility parameters (HSP) of both segments are evaluated to predict their compatibility. The later ones are evaluated either individually from the corresponding segment synthesized separately or from a decomposition of the solubility diagram of the TPUs into two distinct spheres. In a second step, phase separation is experimentally analyzed by combining differential scanning calorimetry, microscopy techniques, and small angle X-ray scattering (SAXS). The microstructure of the TPUs is described considering one soft phase made of polyol chains and short miscible hard segments and a hard phase organized as semi-crystalline nanodomains either dispersed or assembled as ramified (nano)objects within the soft phase. The dynamic mechanical properties of the TPUs can be explained by the presence of such well-defined hard domains in the structure of the TPU, acting as reinforcing fillers while maintaining a thermoplastic elastomer mechanical behavior to the TPU above the glass transition of the continuous soft phase.
[Display omitted]
•Segmented thermoplastic polyurethanes are synthesized from a biobased polyol.•Hansen Solubility Parameters (HSP) can be used to predict phase compatibility.•Microscopic observations and thermomechanical behavior confirm material morphology.•The soft continuous phase contains polyol chains and short miscible hard segments.•Dispersed or continuous hard domains provide a thermoplastic elastomer behavior. |
doi_str_mv | 10.1016/j.polymer.2020.122882 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02926028v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120307096</els_id><sourcerecordid>2462673835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-20fd41a964b81059ca588d4f731e6b01e9394087b428de83cb705b5a4ab435f53</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVJoZu0P6Eg6KkHb6SRbMunEkLSLSykh-xZyPI41mJbrqTdsP--dh16zWngzTdvZniEfOVsyxkvbo_byfeXAcMWGMwagFLwgWy4KkUGUPErsmFMQCZUwT-R6xiPjDHIQW7I69NIU4f0FJH6lkbfn2rXu3ShkwlmwIQh0uSpG88Yk3sxCenUmZmOuBDJ-TEbfJg63_uXSzag7czorOlpjZ05Ox9owP4fFzs3xWXL8-_DZ_KxNX3EL2_1hhweH57vd9n-6eev-7t9ZiVXKQPWNpKbqpC14iyvrMmVamRbCo5FzThWopJMlbUE1aASti5ZXudGmlqKvM3FDfm--nam11NwgwkX7Y3Tu7u9XjQGFRQM1JnP7LeVnYL_c5rf1Ud_CuN8ngZZQFEKJRbHfKVs8DEGbP_bcqaXPPRRv-Whlzz0msc892Odw_nds5u70TocLTYuoE268e4dh79TM5eN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462673835</pqid></control><display><type>article</type><title>On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gallu, Raïssa ; Méchin, Françoise ; Dalmas, Florent ; Gérard, Jean-François ; Perrin, Rémi ; Loup, Frédéric</creator><creatorcontrib>Gallu, Raïssa ; Méchin, Françoise ; Dalmas, Florent ; Gérard, Jean-François ; Perrin, Rémi ; Loup, Frédéric</creatorcontrib><description>This study proposes a thorough investigation, especially based on thermodynamics, to predict phase separation in a linear thermoplastic polyurethane, denoted TPU, prepared from fatty acid-based soft segments and MDI (4,4′-methylene bis(phenyl isocyanate))/BDO (1,4-butanediol) hard segments and specially designed for bitumen modification. Hansen’ solubility parameters (HSP) of both segments are evaluated to predict their compatibility. The later ones are evaluated either individually from the corresponding segment synthesized separately or from a decomposition of the solubility diagram of the TPUs into two distinct spheres. In a second step, phase separation is experimentally analyzed by combining differential scanning calorimetry, microscopy techniques, and small angle X-ray scattering (SAXS). The microstructure of the TPUs is described considering one soft phase made of polyol chains and short miscible hard segments and a hard phase organized as semi-crystalline nanodomains either dispersed or assembled as ramified (nano)objects within the soft phase. The dynamic mechanical properties of the TPUs can be explained by the presence of such well-defined hard domains in the structure of the TPU, acting as reinforcing fillers while maintaining a thermoplastic elastomer mechanical behavior to the TPU above the glass transition of the continuous soft phase.
[Display omitted]
•Segmented thermoplastic polyurethanes are synthesized from a biobased polyol.•Hansen Solubility Parameters (HSP) can be used to predict phase compatibility.•Microscopic observations and thermomechanical behavior confirm material morphology.•The soft continuous phase contains polyol chains and short miscible hard segments.•Dispersed or continuous hard domains provide a thermoplastic elastomer behavior.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.122882</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Butanediol ; Calorimetry ; Chemical Sciences ; Differential scanning calorimetry ; Dynamic mechanical properties ; Engineering Sciences ; Fatty acids ; Glass transition ; Isocyanates ; Materials ; Mechanical properties ; Microstructure ; Morphology ; Parameter modification ; Phase separation ; Polymers ; Polyurethane ; Polyurethane resins ; Segments ; Small angle X ray scattering ; Solubility ; Solubility parameters ; Thermoplastic polyurethane ; Urethane thermoplastic elastomers ; Viscoelastic behavior ; X-ray scattering</subject><ispartof>Polymer (Guilford), 2020-10, Vol.207, p.122882, Article 122882</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 20, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-20fd41a964b81059ca588d4f731e6b01e9394087b428de83cb705b5a4ab435f53</citedby><cites>FETCH-LOGICAL-c418t-20fd41a964b81059ca588d4f731e6b01e9394087b428de83cb705b5a4ab435f53</cites><orcidid>0000-0002-2028-0260 ; 0000-0002-6179-0881 ; 0000-0002-3096-2767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2020.122882$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02926028$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallu, Raïssa</creatorcontrib><creatorcontrib>Méchin, Françoise</creatorcontrib><creatorcontrib>Dalmas, Florent</creatorcontrib><creatorcontrib>Gérard, Jean-François</creatorcontrib><creatorcontrib>Perrin, Rémi</creatorcontrib><creatorcontrib>Loup, Frédéric</creatorcontrib><title>On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU</title><title>Polymer (Guilford)</title><description>This study proposes a thorough investigation, especially based on thermodynamics, to predict phase separation in a linear thermoplastic polyurethane, denoted TPU, prepared from fatty acid-based soft segments and MDI (4,4′-methylene bis(phenyl isocyanate))/BDO (1,4-butanediol) hard segments and specially designed for bitumen modification. Hansen’ solubility parameters (HSP) of both segments are evaluated to predict their compatibility. The later ones are evaluated either individually from the corresponding segment synthesized separately or from a decomposition of the solubility diagram of the TPUs into two distinct spheres. In a second step, phase separation is experimentally analyzed by combining differential scanning calorimetry, microscopy techniques, and small angle X-ray scattering (SAXS). The microstructure of the TPUs is described considering one soft phase made of polyol chains and short miscible hard segments and a hard phase organized as semi-crystalline nanodomains either dispersed or assembled as ramified (nano)objects within the soft phase. The dynamic mechanical properties of the TPUs can be explained by the presence of such well-defined hard domains in the structure of the TPU, acting as reinforcing fillers while maintaining a thermoplastic elastomer mechanical behavior to the TPU above the glass transition of the continuous soft phase.
[Display omitted]
•Segmented thermoplastic polyurethanes are synthesized from a biobased polyol.•Hansen Solubility Parameters (HSP) can be used to predict phase compatibility.•Microscopic observations and thermomechanical behavior confirm material morphology.•The soft continuous phase contains polyol chains and short miscible hard segments.•Dispersed or continuous hard domains provide a thermoplastic elastomer behavior.</description><subject>Butanediol</subject><subject>Calorimetry</subject><subject>Chemical Sciences</subject><subject>Differential scanning calorimetry</subject><subject>Dynamic mechanical properties</subject><subject>Engineering Sciences</subject><subject>Fatty acids</subject><subject>Glass transition</subject><subject>Isocyanates</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Parameter modification</subject><subject>Phase separation</subject><subject>Polymers</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Segments</subject><subject>Small angle X ray scattering</subject><subject>Solubility</subject><subject>Solubility parameters</subject><subject>Thermoplastic polyurethane</subject><subject>Urethane thermoplastic elastomers</subject><subject>Viscoelastic behavior</subject><subject>X-ray scattering</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVJoZu0P6Eg6KkHb6SRbMunEkLSLSykh-xZyPI41mJbrqTdsP--dh16zWngzTdvZniEfOVsyxkvbo_byfeXAcMWGMwagFLwgWy4KkUGUPErsmFMQCZUwT-R6xiPjDHIQW7I69NIU4f0FJH6lkbfn2rXu3ShkwlmwIQh0uSpG88Yk3sxCenUmZmOuBDJ-TEbfJg63_uXSzag7czorOlpjZ05Ox9owP4fFzs3xWXL8-_DZ_KxNX3EL2_1hhweH57vd9n-6eev-7t9ZiVXKQPWNpKbqpC14iyvrMmVamRbCo5FzThWopJMlbUE1aASti5ZXudGmlqKvM3FDfm--nam11NwgwkX7Y3Tu7u9XjQGFRQM1JnP7LeVnYL_c5rf1Ud_CuN8ngZZQFEKJRbHfKVs8DEGbP_bcqaXPPRRv-Whlzz0msc892Odw_nds5u70TocLTYuoE268e4dh79TM5eN</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Gallu, Raïssa</creator><creator>Méchin, Françoise</creator><creator>Dalmas, Florent</creator><creator>Gérard, Jean-François</creator><creator>Perrin, Rémi</creator><creator>Loup, Frédéric</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2028-0260</orcidid><orcidid>https://orcid.org/0000-0002-6179-0881</orcidid><orcidid>https://orcid.org/0000-0002-3096-2767</orcidid></search><sort><creationdate>20201020</creationdate><title>On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU</title><author>Gallu, Raïssa ; Méchin, Françoise ; Dalmas, Florent ; Gérard, Jean-François ; Perrin, Rémi ; Loup, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-20fd41a964b81059ca588d4f731e6b01e9394087b428de83cb705b5a4ab435f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Butanediol</topic><topic>Calorimetry</topic><topic>Chemical Sciences</topic><topic>Differential scanning calorimetry</topic><topic>Dynamic mechanical properties</topic><topic>Engineering Sciences</topic><topic>Fatty acids</topic><topic>Glass transition</topic><topic>Isocyanates</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Parameter modification</topic><topic>Phase separation</topic><topic>Polymers</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Segments</topic><topic>Small angle X ray scattering</topic><topic>Solubility</topic><topic>Solubility parameters</topic><topic>Thermoplastic polyurethane</topic><topic>Urethane thermoplastic elastomers</topic><topic>Viscoelastic behavior</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallu, Raïssa</creatorcontrib><creatorcontrib>Méchin, Françoise</creatorcontrib><creatorcontrib>Dalmas, Florent</creatorcontrib><creatorcontrib>Gérard, Jean-François</creatorcontrib><creatorcontrib>Perrin, Rémi</creatorcontrib><creatorcontrib>Loup, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallu, Raïssa</au><au>Méchin, Françoise</au><au>Dalmas, Florent</au><au>Gérard, Jean-François</au><au>Perrin, Rémi</au><au>Loup, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-10-20</date><risdate>2020</risdate><volume>207</volume><spage>122882</spage><pages>122882-</pages><artnum>122882</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>This study proposes a thorough investigation, especially based on thermodynamics, to predict phase separation in a linear thermoplastic polyurethane, denoted TPU, prepared from fatty acid-based soft segments and MDI (4,4′-methylene bis(phenyl isocyanate))/BDO (1,4-butanediol) hard segments and specially designed for bitumen modification. Hansen’ solubility parameters (HSP) of both segments are evaluated to predict their compatibility. The later ones are evaluated either individually from the corresponding segment synthesized separately or from a decomposition of the solubility diagram of the TPUs into two distinct spheres. In a second step, phase separation is experimentally analyzed by combining differential scanning calorimetry, microscopy techniques, and small angle X-ray scattering (SAXS). The microstructure of the TPUs is described considering one soft phase made of polyol chains and short miscible hard segments and a hard phase organized as semi-crystalline nanodomains either dispersed or assembled as ramified (nano)objects within the soft phase. The dynamic mechanical properties of the TPUs can be explained by the presence of such well-defined hard domains in the structure of the TPU, acting as reinforcing fillers while maintaining a thermoplastic elastomer mechanical behavior to the TPU above the glass transition of the continuous soft phase.
[Display omitted]
•Segmented thermoplastic polyurethanes are synthesized from a biobased polyol.•Hansen Solubility Parameters (HSP) can be used to predict phase compatibility.•Microscopic observations and thermomechanical behavior confirm material morphology.•The soft continuous phase contains polyol chains and short miscible hard segments.•Dispersed or continuous hard domains provide a thermoplastic elastomer behavior.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.122882</doi><orcidid>https://orcid.org/0000-0002-2028-0260</orcidid><orcidid>https://orcid.org/0000-0002-6179-0881</orcidid><orcidid>https://orcid.org/0000-0002-3096-2767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2020-10, Vol.207, p.122882, Article 122882 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02926028v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Butanediol Calorimetry Chemical Sciences Differential scanning calorimetry Dynamic mechanical properties Engineering Sciences Fatty acids Glass transition Isocyanates Materials Mechanical properties Microstructure Morphology Parameter modification Phase separation Polymers Polyurethane Polyurethane resins Segments Small angle X ray scattering Solubility Solubility parameters Thermoplastic polyurethane Urethane thermoplastic elastomers Viscoelastic behavior X-ray scattering |
title | On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20use%20of%20solubility%20parameters%20to%20investigate%20phase%20separation-morphology-mechanical%20behavior%20relationships%20of%20TPU&rft.jtitle=Polymer%20(Guilford)&rft.au=Gallu,%20Ra%C3%AFssa&rft.date=2020-10-20&rft.volume=207&rft.spage=122882&rft.pages=122882-&rft.artnum=122882&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.122882&rft_dat=%3Cproquest_hal_p%3E2462673835%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462673835&rft_id=info:pmid/&rft_els_id=S0032386120307096&rfr_iscdi=true |