Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results

The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2020-09, Vol.13 (17), p.4428-4445
Hauptverfasser: Terrell, Evan, Carré, Vincent, Dufour, Anthony, Aubriet, Frédéric, Le Brech, Yann, Garcia‐Pérez, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4445
container_issue 17
container_start_page 4428
container_title ChemSusChem
container_volume 13
creator Terrell, Evan
Carré, Vincent
Dufour, Anthony
Aubriet, Frédéric
Le Brech, Yann
Garcia‐Pérez, Manuel
description The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assignment of formulae (CxHyOz) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT‐ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT‐ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin. Fragmentation brought to light: High resolution mass spectrometry (Fourier‐transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) is used to characterize milled wood lignins along with other experimental techniques. The structure is also simulated following a stochastic approach, which shows excellent agreement with quantitative experimental results. Coupling this type of structure simulation with FT‐ICR MS shows promise for application to other types of macromolecules.
doi_str_mv 10.1002/cssc.202000239
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02923103v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440884611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4449-a1afd55c55279608caba4c75e9de05e5624c05c67512fb2270dba7fb8486daac3</originalsourceid><addsrcrecordid>eNqFkT9r3DAYh0VpadKka8ci6NIOd5Fk_bG7HW6THDgEcgl0E7IsJwq2dZHklmxZuhf6DfNJKnOJC1266JVePe-DxA-AdxgtMULkSIeglwQRlA5Z8QLs45zTBeP028t5n-E98CaEW4Q4Kjh_DfYyggVFWOyDn6Uborf1GK0bAowOVvZ6cL3V4TPcRKdvVIhWwxMzGK8mCLoWnnf22vXGp4sJt0NC_ajj6E2ArfNwPUTjt97EeeRsVX1ZPz78Pr58fPi1Li_SeraBFyaMXQyH4FWrumDePtUDcHX89bI8XVTnJ-tyVS00pbRYKKzahjHNGBEFR7lWtaJaMFM0BjHDOKEaMc0Fw6StCRGoqZVo65zmvFFKZwfg0857ozq59bZX_l46ZeXpqpJTD5GCZBhl33FiP-7YrXd3owlR9jZo03VqMG4MkmRCcCFEgRL64R_01o1-SD-RhFKU55TjSbjcUdq7ELxp5xdgJKcw5RSmnMNMA--ftGPdm2bGn9NLQLEDftjO3P9HJ8vNpvwr_wMhY65r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440884611</pqid></control><display><type>article</type><title>Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Terrell, Evan ; Carré, Vincent ; Dufour, Anthony ; Aubriet, Frédéric ; Le Brech, Yann ; Garcia‐Pérez, Manuel</creator><creatorcontrib>Terrell, Evan ; Carré, Vincent ; Dufour, Anthony ; Aubriet, Frédéric ; Le Brech, Yann ; Garcia‐Pérez, Manuel</creatorcontrib><description>The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assignment of formulae (CxHyOz) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT‐ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT‐ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin. Fragmentation brought to light: High resolution mass spectrometry (Fourier‐transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) is used to characterize milled wood lignins along with other experimental techniques. The structure is also simulated following a stochastic approach, which shows excellent agreement with quantitative experimental results. Coupling this type of structure simulation with FT‐ICR MS shows promise for application to other types of macromolecules.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202000239</identifier><identifier>PMID: 32174017</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Analytical chemistry ; analytical methods ; biomass ; Chemical and Process Engineering ; Chemical Sciences ; Cyclotron resonance ; Engineering Sciences ; Ions ; Isomers ; Lignin ; Macromolecules ; Mass spectrometry ; NMR spectroscopy ; Oligomers ; Scientific imaging ; simulations</subject><ispartof>ChemSusChem, 2020-09, Vol.13 (17), p.4428-4445</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4449-a1afd55c55279608caba4c75e9de05e5624c05c67512fb2270dba7fb8486daac3</citedby><cites>FETCH-LOGICAL-c4449-a1afd55c55279608caba4c75e9de05e5624c05c67512fb2270dba7fb8486daac3</cites><orcidid>0000-0002-9386-2632 ; 0000-0002-1079-4110 ; 0000-0003-2457-7974 ; 0000-0002-3555-9707 ; 0000-0002-0719-7366 ; 0000-0002-8441-1928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202000239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202000239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32174017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02923103$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Terrell, Evan</creatorcontrib><creatorcontrib>Carré, Vincent</creatorcontrib><creatorcontrib>Dufour, Anthony</creatorcontrib><creatorcontrib>Aubriet, Frédéric</creatorcontrib><creatorcontrib>Le Brech, Yann</creatorcontrib><creatorcontrib>Garcia‐Pérez, Manuel</creatorcontrib><title>Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assignment of formulae (CxHyOz) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT‐ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT‐ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin. Fragmentation brought to light: High resolution mass spectrometry (Fourier‐transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) is used to characterize milled wood lignins along with other experimental techniques. The structure is also simulated following a stochastic approach, which shows excellent agreement with quantitative experimental results. Coupling this type of structure simulation with FT‐ICR MS shows promise for application to other types of macromolecules.</description><subject>Analytical chemistry</subject><subject>analytical methods</subject><subject>biomass</subject><subject>Chemical and Process Engineering</subject><subject>Chemical Sciences</subject><subject>Cyclotron resonance</subject><subject>Engineering Sciences</subject><subject>Ions</subject><subject>Isomers</subject><subject>Lignin</subject><subject>Macromolecules</subject><subject>Mass spectrometry</subject><subject>NMR spectroscopy</subject><subject>Oligomers</subject><subject>Scientific imaging</subject><subject>simulations</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkT9r3DAYh0VpadKka8ci6NIOd5Fk_bG7HW6THDgEcgl0E7IsJwq2dZHklmxZuhf6DfNJKnOJC1266JVePe-DxA-AdxgtMULkSIeglwQRlA5Z8QLs45zTBeP028t5n-E98CaEW4Q4Kjh_DfYyggVFWOyDn6Uborf1GK0bAowOVvZ6cL3V4TPcRKdvVIhWwxMzGK8mCLoWnnf22vXGp4sJt0NC_ajj6E2ArfNwPUTjt97EeeRsVX1ZPz78Pr58fPi1Li_SeraBFyaMXQyH4FWrumDePtUDcHX89bI8XVTnJ-tyVS00pbRYKKzahjHNGBEFR7lWtaJaMFM0BjHDOKEaMc0Fw6StCRGoqZVo65zmvFFKZwfg0857ozq59bZX_l46ZeXpqpJTD5GCZBhl33FiP-7YrXd3owlR9jZo03VqMG4MkmRCcCFEgRL64R_01o1-SD-RhFKU55TjSbjcUdq7ELxp5xdgJKcw5RSmnMNMA--ftGPdm2bGn9NLQLEDftjO3P9HJ8vNpvwr_wMhY65r</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Terrell, Evan</creator><creator>Carré, Vincent</creator><creator>Dufour, Anthony</creator><creator>Aubriet, Frédéric</creator><creator>Le Brech, Yann</creator><creator>Garcia‐Pérez, Manuel</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe/Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9386-2632</orcidid><orcidid>https://orcid.org/0000-0002-1079-4110</orcidid><orcidid>https://orcid.org/0000-0003-2457-7974</orcidid><orcidid>https://orcid.org/0000-0002-3555-9707</orcidid><orcidid>https://orcid.org/0000-0002-0719-7366</orcidid><orcidid>https://orcid.org/0000-0002-8441-1928</orcidid></search><sort><creationdate>20200907</creationdate><title>Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results</title><author>Terrell, Evan ; Carré, Vincent ; Dufour, Anthony ; Aubriet, Frédéric ; Le Brech, Yann ; Garcia‐Pérez, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4449-a1afd55c55279608caba4c75e9de05e5624c05c67512fb2270dba7fb8486daac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>analytical methods</topic><topic>biomass</topic><topic>Chemical and Process Engineering</topic><topic>Chemical Sciences</topic><topic>Cyclotron resonance</topic><topic>Engineering Sciences</topic><topic>Ions</topic><topic>Isomers</topic><topic>Lignin</topic><topic>Macromolecules</topic><topic>Mass spectrometry</topic><topic>NMR spectroscopy</topic><topic>Oligomers</topic><topic>Scientific imaging</topic><topic>simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terrell, Evan</creatorcontrib><creatorcontrib>Carré, Vincent</creatorcontrib><creatorcontrib>Dufour, Anthony</creatorcontrib><creatorcontrib>Aubriet, Frédéric</creatorcontrib><creatorcontrib>Le Brech, Yann</creatorcontrib><creatorcontrib>Garcia‐Pérez, Manuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terrell, Evan</au><au>Carré, Vincent</au><au>Dufour, Anthony</au><au>Aubriet, Frédéric</au><au>Le Brech, Yann</au><au>Garcia‐Pérez, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2020-09-07</date><risdate>2020</risdate><volume>13</volume><issue>17</issue><spage>4428</spage><epage>4445</epage><pages>4428-4445</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assignment of formulae (CxHyOz) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT‐ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT‐ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin. Fragmentation brought to light: High resolution mass spectrometry (Fourier‐transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) is used to characterize milled wood lignins along with other experimental techniques. The structure is also simulated following a stochastic approach, which shows excellent agreement with quantitative experimental results. Coupling this type of structure simulation with FT‐ICR MS shows promise for application to other types of macromolecules.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32174017</pmid><doi>10.1002/cssc.202000239</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9386-2632</orcidid><orcidid>https://orcid.org/0000-0002-1079-4110</orcidid><orcidid>https://orcid.org/0000-0003-2457-7974</orcidid><orcidid>https://orcid.org/0000-0002-3555-9707</orcidid><orcidid>https://orcid.org/0000-0002-0719-7366</orcidid><orcidid>https://orcid.org/0000-0002-8441-1928</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2020-09, Vol.13 (17), p.4428-4445
issn 1864-5631
1864-564X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02923103v1
source Wiley Online Library Journals Frontfile Complete
subjects Analytical chemistry
analytical methods
biomass
Chemical and Process Engineering
Chemical Sciences
Cyclotron resonance
Engineering Sciences
Ions
Isomers
Lignin
Macromolecules
Mass spectrometry
NMR spectroscopy
Oligomers
Scientific imaging
simulations
title Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20to%20Lignomics:%20Stochastic%20Generation%20of%20Oligomeric%20Lignin%20Structures%20for%20Interpretation%20of%20MALDI%E2%80%93FT%E2%80%90ICR%E2%80%90MS%20Results&rft.jtitle=ChemSusChem&rft.au=Terrell,%20Evan&rft.date=2020-09-07&rft.volume=13&rft.issue=17&rft.spage=4428&rft.epage=4445&rft.pages=4428-4445&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202000239&rft_dat=%3Cproquest_hal_p%3E2440884611%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440884611&rft_id=info:pmid/32174017&rfr_iscdi=true