Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results
The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assi...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2020-09, Vol.13 (17), p.4428-4445 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4445 |
---|---|
container_issue | 17 |
container_start_page | 4428 |
container_title | ChemSusChem |
container_volume | 13 |
creator | Terrell, Evan Carré, Vincent Dufour, Anthony Aubriet, Frédéric Le Brech, Yann Garcia‐Pérez, Manuel |
description | The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assignment of formulae (CxHyOz) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT‐ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT‐ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.
Fragmentation brought to light: High resolution mass spectrometry (Fourier‐transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) is used to characterize milled wood lignins along with other experimental techniques. The structure is also simulated following a stochastic approach, which shows excellent agreement with quantitative experimental results. Coupling this type of structure simulation with FT‐ICR MS shows promise for application to other types of macromolecules. |
doi_str_mv | 10.1002/cssc.202000239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02923103v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440884611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4449-a1afd55c55279608caba4c75e9de05e5624c05c67512fb2270dba7fb8486daac3</originalsourceid><addsrcrecordid>eNqFkT9r3DAYh0VpadKka8ci6NIOd5Fk_bG7HW6THDgEcgl0E7IsJwq2dZHklmxZuhf6DfNJKnOJC1266JVePe-DxA-AdxgtMULkSIeglwQRlA5Z8QLs45zTBeP028t5n-E98CaEW4Q4Kjh_DfYyggVFWOyDn6Uborf1GK0bAowOVvZ6cL3V4TPcRKdvVIhWwxMzGK8mCLoWnnf22vXGp4sJt0NC_ajj6E2ArfNwPUTjt97EeeRsVX1ZPz78Pr58fPi1Li_SeraBFyaMXQyH4FWrumDePtUDcHX89bI8XVTnJ-tyVS00pbRYKKzahjHNGBEFR7lWtaJaMFM0BjHDOKEaMc0Fw6StCRGoqZVo65zmvFFKZwfg0857ozq59bZX_l46ZeXpqpJTD5GCZBhl33FiP-7YrXd3owlR9jZo03VqMG4MkmRCcCFEgRL64R_01o1-SD-RhFKU55TjSbjcUdq7ELxp5xdgJKcw5RSmnMNMA--ftGPdm2bGn9NLQLEDftjO3P9HJ8vNpvwr_wMhY65r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440884611</pqid></control><display><type>article</type><title>Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Terrell, Evan ; Carré, Vincent ; Dufour, Anthony ; Aubriet, Frédéric ; Le Brech, Yann ; Garcia‐Pérez, Manuel</creator><creatorcontrib>Terrell, Evan ; Carré, Vincent ; Dufour, Anthony ; Aubriet, Frédéric ; Le Brech, Yann ; Garcia‐Pérez, Manuel</creatorcontrib><description>The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assignment of formulae (CxHyOz) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT‐ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT‐ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.
Fragmentation brought to light: High resolution mass spectrometry (Fourier‐transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) is used to characterize milled wood lignins along with other experimental techniques. The structure is also simulated following a stochastic approach, which shows excellent agreement with quantitative experimental results. Coupling this type of structure simulation with FT‐ICR MS shows promise for application to other types of macromolecules.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202000239</identifier><identifier>PMID: 32174017</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Analytical chemistry ; analytical methods ; biomass ; Chemical and Process Engineering ; Chemical Sciences ; Cyclotron resonance ; Engineering Sciences ; Ions ; Isomers ; Lignin ; Macromolecules ; Mass spectrometry ; NMR spectroscopy ; Oligomers ; Scientific imaging ; simulations</subject><ispartof>ChemSusChem, 2020-09, Vol.13 (17), p.4428-4445</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4449-a1afd55c55279608caba4c75e9de05e5624c05c67512fb2270dba7fb8486daac3</citedby><cites>FETCH-LOGICAL-c4449-a1afd55c55279608caba4c75e9de05e5624c05c67512fb2270dba7fb8486daac3</cites><orcidid>0000-0002-9386-2632 ; 0000-0002-1079-4110 ; 0000-0003-2457-7974 ; 0000-0002-3555-9707 ; 0000-0002-0719-7366 ; 0000-0002-8441-1928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202000239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202000239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32174017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02923103$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Terrell, Evan</creatorcontrib><creatorcontrib>Carré, Vincent</creatorcontrib><creatorcontrib>Dufour, Anthony</creatorcontrib><creatorcontrib>Aubriet, Frédéric</creatorcontrib><creatorcontrib>Le Brech, Yann</creatorcontrib><creatorcontrib>Garcia‐Pérez, Manuel</creatorcontrib><title>Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assignment of formulae (CxHyOz) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT‐ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT‐ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.
Fragmentation brought to light: High resolution mass spectrometry (Fourier‐transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) is used to characterize milled wood lignins along with other experimental techniques. The structure is also simulated following a stochastic approach, which shows excellent agreement with quantitative experimental results. Coupling this type of structure simulation with FT‐ICR MS shows promise for application to other types of macromolecules.</description><subject>Analytical chemistry</subject><subject>analytical methods</subject><subject>biomass</subject><subject>Chemical and Process Engineering</subject><subject>Chemical Sciences</subject><subject>Cyclotron resonance</subject><subject>Engineering Sciences</subject><subject>Ions</subject><subject>Isomers</subject><subject>Lignin</subject><subject>Macromolecules</subject><subject>Mass spectrometry</subject><subject>NMR spectroscopy</subject><subject>Oligomers</subject><subject>Scientific imaging</subject><subject>simulations</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkT9r3DAYh0VpadKka8ci6NIOd5Fk_bG7HW6THDgEcgl0E7IsJwq2dZHklmxZuhf6DfNJKnOJC1266JVePe-DxA-AdxgtMULkSIeglwQRlA5Z8QLs45zTBeP028t5n-E98CaEW4Q4Kjh_DfYyggVFWOyDn6Uborf1GK0bAowOVvZ6cL3V4TPcRKdvVIhWwxMzGK8mCLoWnnf22vXGp4sJt0NC_ajj6E2ArfNwPUTjt97EeeRsVX1ZPz78Pr58fPi1Li_SeraBFyaMXQyH4FWrumDePtUDcHX89bI8XVTnJ-tyVS00pbRYKKzahjHNGBEFR7lWtaJaMFM0BjHDOKEaMc0Fw6StCRGoqZVo65zmvFFKZwfg0857ozq59bZX_l46ZeXpqpJTD5GCZBhl33FiP-7YrXd3owlR9jZo03VqMG4MkmRCcCFEgRL64R_01o1-SD-RhFKU55TjSbjcUdq7ELxp5xdgJKcw5RSmnMNMA--ftGPdm2bGn9NLQLEDftjO3P9HJ8vNpvwr_wMhY65r</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Terrell, Evan</creator><creator>Carré, Vincent</creator><creator>Dufour, Anthony</creator><creator>Aubriet, Frédéric</creator><creator>Le Brech, Yann</creator><creator>Garcia‐Pérez, Manuel</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe/Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9386-2632</orcidid><orcidid>https://orcid.org/0000-0002-1079-4110</orcidid><orcidid>https://orcid.org/0000-0003-2457-7974</orcidid><orcidid>https://orcid.org/0000-0002-3555-9707</orcidid><orcidid>https://orcid.org/0000-0002-0719-7366</orcidid><orcidid>https://orcid.org/0000-0002-8441-1928</orcidid></search><sort><creationdate>20200907</creationdate><title>Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results</title><author>Terrell, Evan ; Carré, Vincent ; Dufour, Anthony ; Aubriet, Frédéric ; Le Brech, Yann ; Garcia‐Pérez, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4449-a1afd55c55279608caba4c75e9de05e5624c05c67512fb2270dba7fb8486daac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>analytical methods</topic><topic>biomass</topic><topic>Chemical and Process Engineering</topic><topic>Chemical Sciences</topic><topic>Cyclotron resonance</topic><topic>Engineering Sciences</topic><topic>Ions</topic><topic>Isomers</topic><topic>Lignin</topic><topic>Macromolecules</topic><topic>Mass spectrometry</topic><topic>NMR spectroscopy</topic><topic>Oligomers</topic><topic>Scientific imaging</topic><topic>simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terrell, Evan</creatorcontrib><creatorcontrib>Carré, Vincent</creatorcontrib><creatorcontrib>Dufour, Anthony</creatorcontrib><creatorcontrib>Aubriet, Frédéric</creatorcontrib><creatorcontrib>Le Brech, Yann</creatorcontrib><creatorcontrib>Garcia‐Pérez, Manuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terrell, Evan</au><au>Carré, Vincent</au><au>Dufour, Anthony</au><au>Aubriet, Frédéric</au><au>Le Brech, Yann</au><au>Garcia‐Pérez, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2020-09-07</date><risdate>2020</risdate><volume>13</volume><issue>17</issue><spage>4428</spage><epage>4445</epage><pages>4428-4445</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High‐resolution mass spectrometry—specifically, Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR MS)—offers new opportunities for analysis of oligomers with the assignment of formulae (CxHyOz) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT‐ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT‐ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.
Fragmentation brought to light: High resolution mass spectrometry (Fourier‐transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) is used to characterize milled wood lignins along with other experimental techniques. The structure is also simulated following a stochastic approach, which shows excellent agreement with quantitative experimental results. Coupling this type of structure simulation with FT‐ICR MS shows promise for application to other types of macromolecules.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32174017</pmid><doi>10.1002/cssc.202000239</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9386-2632</orcidid><orcidid>https://orcid.org/0000-0002-1079-4110</orcidid><orcidid>https://orcid.org/0000-0003-2457-7974</orcidid><orcidid>https://orcid.org/0000-0002-3555-9707</orcidid><orcidid>https://orcid.org/0000-0002-0719-7366</orcidid><orcidid>https://orcid.org/0000-0002-8441-1928</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2020-09, Vol.13 (17), p.4428-4445 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02923103v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analytical chemistry analytical methods biomass Chemical and Process Engineering Chemical Sciences Cyclotron resonance Engineering Sciences Ions Isomers Lignin Macromolecules Mass spectrometry NMR spectroscopy Oligomers Scientific imaging simulations |
title | Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FT‐ICR‐MS Results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20to%20Lignomics:%20Stochastic%20Generation%20of%20Oligomeric%20Lignin%20Structures%20for%20Interpretation%20of%20MALDI%E2%80%93FT%E2%80%90ICR%E2%80%90MS%20Results&rft.jtitle=ChemSusChem&rft.au=Terrell,%20Evan&rft.date=2020-09-07&rft.volume=13&rft.issue=17&rft.spage=4428&rft.epage=4445&rft.pages=4428-4445&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202000239&rft_dat=%3Cproquest_hal_p%3E2440884611%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440884611&rft_id=info:pmid/32174017&rfr_iscdi=true |