Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution

Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-05, Vol.142 (20), p.9439-9446
Hauptverfasser: Fang, Yuan, Ding, Song-Yuan, Zhang, Meng, Steinmann, Stephan N, Hu, Ren, Mao, Bing-Wei, Feliu, Juan M, Tian, Zhong-Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9446
container_issue 20
container_start_page 9439
container_title Journal of the American Chemical Society
container_volume 142
creator Fang, Yuan
Ding, Song-Yuan
Zhang, Meng
Steinmann, Stephan N
Hu, Ren
Mao, Bing-Wei
Feliu, Juan M
Tian, Zhong-Qun
description Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × √7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w] n and [w···w···] n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces.
doi_str_mv 10.1021/jacs.0c02639
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02917730v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395614516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-b105eacf40248cfddda5558481dc3d0071ee00ee1f3905488b643c96586db3123</originalsourceid><addsrcrecordid>eNptkc9u1DAQxi0Eokvhxhnl2EqkzNix4xyjqqWVVkJi4Ww5tkO9ysbFfypx4x14Q56kWXYpF06jmfnNN5r5CHmLcIFA8cNWm3QBBqhg3TOyQk6h5kjFc7ICAFq3UrAT8iql7ZI2VOJLcsIoY7KDdkWGz-7BJ5_9_K3Kd67qc9j5lL2pNjkWk0t0qdL5T-92zi6O2rgqjFVfzhDxvLqanMkxWPf7569NmcYSl9neeFttwlSyD_Nr8mLUU3JvjvGUfL2--nJ5U68_fby97Ne1bgTN9YDAnTZjA7SRZrTWas65bCRawyxAi84BOIcj64A3Ug6iYaYTXAo7MKTslJwfdO_0pO6j3-n4QwXt1U2_Vvsa0A7blsEDLuzZgb2P4XtxKavlauOmSc8ulKQo67jAhqNY0PcH1MSQUnTjkzaC2jug9g6oowML_u6oXIads0_w35f_W72f2oYS5-Up_9d6BI6rjgo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395614516</pqid></control><display><type>article</type><title>Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution</title><source>ACS Publications</source><creator>Fang, Yuan ; Ding, Song-Yuan ; Zhang, Meng ; Steinmann, Stephan N ; Hu, Ren ; Mao, Bing-Wei ; Feliu, Juan M ; Tian, Zhong-Qun</creator><creatorcontrib>Fang, Yuan ; Ding, Song-Yuan ; Zhang, Meng ; Steinmann, Stephan N ; Hu, Ren ; Mao, Bing-Wei ; Feliu, Juan M ; Tian, Zhong-Qun</creatorcontrib><description>Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × √7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w] n and [w···w···] n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c02639</identifier><identifier>PMID: 32338907</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>Journal of the American Chemical Society, 2020-05, Vol.142 (20), p.9439-9446</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-b105eacf40248cfddda5558481dc3d0071ee00ee1f3905488b643c96586db3123</citedby><cites>FETCH-LOGICAL-a462t-b105eacf40248cfddda5558481dc3d0071ee00ee1f3905488b643c96586db3123</cites><orcidid>0000-0002-9015-0162 ; 0000-0002-2064-1038 ; 0000-0002-1862-0713 ; 0000-0002-2777-356X ; 0000-0002-9775-8189 ; 0000-0003-4713-4375 ; 0000-0001-6893-529X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c02639$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c02639$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32338907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02917730$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Yuan</creatorcontrib><creatorcontrib>Ding, Song-Yuan</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Steinmann, Stephan N</creatorcontrib><creatorcontrib>Hu, Ren</creatorcontrib><creatorcontrib>Mao, Bing-Wei</creatorcontrib><creatorcontrib>Feliu, Juan M</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><title>Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × √7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w] n and [w···w···] n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkc9u1DAQxi0Eokvhxhnl2EqkzNix4xyjqqWVVkJi4Ww5tkO9ysbFfypx4x14Q56kWXYpF06jmfnNN5r5CHmLcIFA8cNWm3QBBqhg3TOyQk6h5kjFc7ICAFq3UrAT8iql7ZI2VOJLcsIoY7KDdkWGz-7BJ5_9_K3Kd67qc9j5lL2pNjkWk0t0qdL5T-92zi6O2rgqjFVfzhDxvLqanMkxWPf7569NmcYSl9neeFttwlSyD_Nr8mLUU3JvjvGUfL2--nJ5U68_fby97Ne1bgTN9YDAnTZjA7SRZrTWas65bCRawyxAi84BOIcj64A3Ug6iYaYTXAo7MKTslJwfdO_0pO6j3-n4QwXt1U2_Vvsa0A7blsEDLuzZgb2P4XtxKavlauOmSc8ulKQo67jAhqNY0PcH1MSQUnTjkzaC2jug9g6oowML_u6oXIads0_w35f_W72f2oYS5-Up_9d6BI6rjgo</recordid><startdate>20200520</startdate><enddate>20200520</enddate><creator>Fang, Yuan</creator><creator>Ding, Song-Yuan</creator><creator>Zhang, Meng</creator><creator>Steinmann, Stephan N</creator><creator>Hu, Ren</creator><creator>Mao, Bing-Wei</creator><creator>Feliu, Juan M</creator><creator>Tian, Zhong-Qun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9015-0162</orcidid><orcidid>https://orcid.org/0000-0002-2064-1038</orcidid><orcidid>https://orcid.org/0000-0002-1862-0713</orcidid><orcidid>https://orcid.org/0000-0002-2777-356X</orcidid><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0003-4713-4375</orcidid><orcidid>https://orcid.org/0000-0001-6893-529X</orcidid></search><sort><creationdate>20200520</creationdate><title>Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution</title><author>Fang, Yuan ; Ding, Song-Yuan ; Zhang, Meng ; Steinmann, Stephan N ; Hu, Ren ; Mao, Bing-Wei ; Feliu, Juan M ; Tian, Zhong-Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-b105eacf40248cfddda5558481dc3d0071ee00ee1f3905488b643c96586db3123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yuan</creatorcontrib><creatorcontrib>Ding, Song-Yuan</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Steinmann, Stephan N</creatorcontrib><creatorcontrib>Hu, Ren</creatorcontrib><creatorcontrib>Mao, Bing-Wei</creatorcontrib><creatorcontrib>Feliu, Juan M</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yuan</au><au>Ding, Song-Yuan</au><au>Zhang, Meng</au><au>Steinmann, Stephan N</au><au>Hu, Ren</au><au>Mao, Bing-Wei</au><au>Feliu, Juan M</au><au>Tian, Zhong-Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-05-20</date><risdate>2020</risdate><volume>142</volume><issue>20</issue><spage>9439</spage><epage>9446</epage><pages>9439-9446</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × √7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w] n and [w···w···] n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32338907</pmid><doi>10.1021/jacs.0c02639</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9015-0162</orcidid><orcidid>https://orcid.org/0000-0002-2064-1038</orcidid><orcidid>https://orcid.org/0000-0002-1862-0713</orcidid><orcidid>https://orcid.org/0000-0002-2777-356X</orcidid><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0003-4713-4375</orcidid><orcidid>https://orcid.org/0000-0001-6893-529X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-05, Vol.142 (20), p.9439-9446
issn 0002-7863
1520-5126
language eng
recordid cdi_hal_primary_oai_HAL_hal_02917730v1
source ACS Publications
subjects Catalysis
Chemical Sciences
or physical chemistry
Theoretical and
title Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Atomistic%20Structures%20at%20the%20Interface%20of%20Au(111)%20Electrode%E2%80%93Sulfuric%20Acid%20Solution&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Fang,%20Yuan&rft.date=2020-05-20&rft.volume=142&rft.issue=20&rft.spage=9439&rft.epage=9446&rft.pages=9439-9446&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c02639&rft_dat=%3Cproquest_hal_p%3E2395614516%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395614516&rft_id=info:pmid/32338907&rfr_iscdi=true