Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution
Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-05, Vol.142 (20), p.9439-9446 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9446 |
---|---|
container_issue | 20 |
container_start_page | 9439 |
container_title | Journal of the American Chemical Society |
container_volume | 142 |
creator | Fang, Yuan Ding, Song-Yuan Zhang, Meng Steinmann, Stephan N Hu, Ren Mao, Bing-Wei Feliu, Juan M Tian, Zhong-Qun |
description | Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × √7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w] n and [w···w···] n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces. |
doi_str_mv | 10.1021/jacs.0c02639 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02917730v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395614516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-b105eacf40248cfddda5558481dc3d0071ee00ee1f3905488b643c96586db3123</originalsourceid><addsrcrecordid>eNptkc9u1DAQxi0Eokvhxhnl2EqkzNix4xyjqqWVVkJi4Ww5tkO9ysbFfypx4x14Q56kWXYpF06jmfnNN5r5CHmLcIFA8cNWm3QBBqhg3TOyQk6h5kjFc7ICAFq3UrAT8iql7ZI2VOJLcsIoY7KDdkWGz-7BJ5_9_K3Kd67qc9j5lL2pNjkWk0t0qdL5T-92zi6O2rgqjFVfzhDxvLqanMkxWPf7569NmcYSl9neeFttwlSyD_Nr8mLUU3JvjvGUfL2--nJ5U68_fby97Ne1bgTN9YDAnTZjA7SRZrTWas65bCRawyxAi84BOIcj64A3Ug6iYaYTXAo7MKTslJwfdO_0pO6j3-n4QwXt1U2_Vvsa0A7blsEDLuzZgb2P4XtxKavlauOmSc8ulKQo67jAhqNY0PcH1MSQUnTjkzaC2jug9g6oowML_u6oXIads0_w35f_W72f2oYS5-Up_9d6BI6rjgo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395614516</pqid></control><display><type>article</type><title>Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution</title><source>ACS Publications</source><creator>Fang, Yuan ; Ding, Song-Yuan ; Zhang, Meng ; Steinmann, Stephan N ; Hu, Ren ; Mao, Bing-Wei ; Feliu, Juan M ; Tian, Zhong-Qun</creator><creatorcontrib>Fang, Yuan ; Ding, Song-Yuan ; Zhang, Meng ; Steinmann, Stephan N ; Hu, Ren ; Mao, Bing-Wei ; Feliu, Juan M ; Tian, Zhong-Qun</creatorcontrib><description>Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × √7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w] n and [w···w···] n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c02639</identifier><identifier>PMID: 32338907</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>Journal of the American Chemical Society, 2020-05, Vol.142 (20), p.9439-9446</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-b105eacf40248cfddda5558481dc3d0071ee00ee1f3905488b643c96586db3123</citedby><cites>FETCH-LOGICAL-a462t-b105eacf40248cfddda5558481dc3d0071ee00ee1f3905488b643c96586db3123</cites><orcidid>0000-0002-9015-0162 ; 0000-0002-2064-1038 ; 0000-0002-1862-0713 ; 0000-0002-2777-356X ; 0000-0002-9775-8189 ; 0000-0003-4713-4375 ; 0000-0001-6893-529X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c02639$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c02639$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32338907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02917730$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Yuan</creatorcontrib><creatorcontrib>Ding, Song-Yuan</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Steinmann, Stephan N</creatorcontrib><creatorcontrib>Hu, Ren</creatorcontrib><creatorcontrib>Mao, Bing-Wei</creatorcontrib><creatorcontrib>Feliu, Juan M</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><title>Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × √7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w] n and [w···w···] n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkc9u1DAQxi0Eokvhxhnl2EqkzNix4xyjqqWVVkJi4Ww5tkO9ysbFfypx4x14Q56kWXYpF06jmfnNN5r5CHmLcIFA8cNWm3QBBqhg3TOyQk6h5kjFc7ICAFq3UrAT8iql7ZI2VOJLcsIoY7KDdkWGz-7BJ5_9_K3Kd67qc9j5lL2pNjkWk0t0qdL5T-92zi6O2rgqjFVfzhDxvLqanMkxWPf7569NmcYSl9neeFttwlSyD_Nr8mLUU3JvjvGUfL2--nJ5U68_fby97Ne1bgTN9YDAnTZjA7SRZrTWas65bCRawyxAi84BOIcj64A3Ug6iYaYTXAo7MKTslJwfdO_0pO6j3-n4QwXt1U2_Vvsa0A7blsEDLuzZgb2P4XtxKavlauOmSc8ulKQo67jAhqNY0PcH1MSQUnTjkzaC2jug9g6oowML_u6oXIads0_w35f_W72f2oYS5-Up_9d6BI6rjgo</recordid><startdate>20200520</startdate><enddate>20200520</enddate><creator>Fang, Yuan</creator><creator>Ding, Song-Yuan</creator><creator>Zhang, Meng</creator><creator>Steinmann, Stephan N</creator><creator>Hu, Ren</creator><creator>Mao, Bing-Wei</creator><creator>Feliu, Juan M</creator><creator>Tian, Zhong-Qun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9015-0162</orcidid><orcidid>https://orcid.org/0000-0002-2064-1038</orcidid><orcidid>https://orcid.org/0000-0002-1862-0713</orcidid><orcidid>https://orcid.org/0000-0002-2777-356X</orcidid><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0003-4713-4375</orcidid><orcidid>https://orcid.org/0000-0001-6893-529X</orcidid></search><sort><creationdate>20200520</creationdate><title>Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution</title><author>Fang, Yuan ; Ding, Song-Yuan ; Zhang, Meng ; Steinmann, Stephan N ; Hu, Ren ; Mao, Bing-Wei ; Feliu, Juan M ; Tian, Zhong-Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-b105eacf40248cfddda5558481dc3d0071ee00ee1f3905488b643c96586db3123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yuan</creatorcontrib><creatorcontrib>Ding, Song-Yuan</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Steinmann, Stephan N</creatorcontrib><creatorcontrib>Hu, Ren</creatorcontrib><creatorcontrib>Mao, Bing-Wei</creatorcontrib><creatorcontrib>Feliu, Juan M</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yuan</au><au>Ding, Song-Yuan</au><au>Zhang, Meng</au><au>Steinmann, Stephan N</au><au>Hu, Ren</au><au>Mao, Bing-Wei</au><au>Feliu, Juan M</au><au>Tian, Zhong-Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-05-20</date><risdate>2020</risdate><volume>142</volume><issue>20</issue><spage>9439</spage><epage>9446</epage><pages>9439-9446</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × √7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × √7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w] n and [w···w···] n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32338907</pmid><doi>10.1021/jacs.0c02639</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9015-0162</orcidid><orcidid>https://orcid.org/0000-0002-2064-1038</orcidid><orcidid>https://orcid.org/0000-0002-1862-0713</orcidid><orcidid>https://orcid.org/0000-0002-2777-356X</orcidid><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0003-4713-4375</orcidid><orcidid>https://orcid.org/0000-0001-6893-529X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2020-05, Vol.142 (20), p.9439-9446 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02917730v1 |
source | ACS Publications |
subjects | Catalysis Chemical Sciences or physical chemistry Theoretical and |
title | Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Atomistic%20Structures%20at%20the%20Interface%20of%20Au(111)%20Electrode%E2%80%93Sulfuric%20Acid%20Solution&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Fang,%20Yuan&rft.date=2020-05-20&rft.volume=142&rft.issue=20&rft.spage=9439&rft.epage=9446&rft.pages=9439-9446&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c02639&rft_dat=%3Cproquest_hal_p%3E2395614516%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395614516&rft_id=info:pmid/32338907&rfr_iscdi=true |