Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China

High-precision cadmium (Cd) isotope compositions are reported for sphalerite, galena, and smithsonite from the Fule Zn–Pb–Cd deposit, a typical Mississippi Valley-type deposit in Southwest China. Dark sphalerite has lighter δ 114/110 Cd values (0.06 to 0.46 ‰) than light sphalerite (0.43 to 0.70 ‰),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2017-06, Vol.52 (5), p.675-686
Hauptverfasser: Zhu, Chuanwei, Wen, Hanjie, Zhang, Yuxu, Fu, Shaohong, Fan, Haifeng, Cloquet, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 686
container_issue 5
container_start_page 675
container_title Mineralium deposita
container_volume 52
creator Zhu, Chuanwei
Wen, Hanjie
Zhang, Yuxu
Fu, Shaohong
Fan, Haifeng
Cloquet, Christophe
description High-precision cadmium (Cd) isotope compositions are reported for sphalerite, galena, and smithsonite from the Fule Zn–Pb–Cd deposit, a typical Mississippi Valley-type deposit in Southwest China. Dark sphalerite has lighter δ 114/110 Cd values (0.06 to 0.46 ‰) than light sphalerite (0.43 to 0.70 ‰), and the Cd in galena is primarily in the form of sphalerite micro-inclusions with δ 114/110 Cd of −0.35 to 0.39 ‰. From early to late stages, δ 114/110 Cd values of smithsonite regularly increase from 0.19 to 0.42 ‰, whereas Cd/Zn ratios decrease from 252 to 136; the δ 114/110 Cd variation pattern of supergene smithsonite reflects kinetic Rayleigh fractionation during low-temperature processes. From the bottom to the top of the orebody, the dark sphalerite has different patterns in δ 114/110 Cd values, Cd/Zn ratios, δ 34 S values, and Fe concentrations compared to the light sphalerite, indicating that dark and light sphalerite formed by different processes. The varying patterns of δ 144/110 Cd values and Cd/Zn ratios within light sphalerite are similar to those of layered smithsonite, and the δ 144/110 Cd values have a positive correlation with δ 34 S values, indicating that Cd isotope fractionation in the light sphalerite was due to kinetic Rayleigh fractionation. Instead, in dark sphalerite, the δ 144/110 Cd values have a negative correlation with δ 34 S values and a positive correlation with the Cd/Zn ratio. Thus, it can be concluded that dark sphalerite could be modeled in terms of two-component mixing (basement fluid and host-rock fluid), which is in agreement with previous explanations for the negative correlation between δ 66 Zn and δ 34 S in some typical Zn–Pb deposits. We propose that the significant variation in Cd isotope composition observed in the Fule Zn–Pb–Cd deposit confirms that Cd isotopes can be used for tracing fluid evolution and ore formation.
doi_str_mv 10.1007/s00126-016-0691-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02915133v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902056295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-a4ddbc26fe4770a7df05381fdae223e38cbb13c3b2deea209ed4fd2a0c771b843</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8BT4LVmaSfx6W4rrDiwY-Dl5A2qZul29SmVfbfm1IRL8JkBjLP-zK8hJwjXCNAcuMAkMUBoH9xhkFyQGYYchZgGseHZAbgt2GUpcfkxLktAGQYwoy85VLtzLCjxtnetppWnSx7Yxs5Nmoa2m80XQ61pg_GubHa1tBXWdd6H_R7r1C6tc70V_TJDv3mS7ue5hvTyFNyVMna6bOfOScvy9vnfBWsH-_u88U6kCHPet-VKkoWVzpMEpCJqiDiKVZKasa45mlZFMhLXjCltWSQaRVWikkokwSLNORzcjn5bmQt2s7sZLcXVhqxWqzF-Acswwg5_0TPXkxs29mPwZ8qtnboGn-ewAwYRDHLIk_hRJWdda7T1a8tghjjFlPcwsctxrhF4jVs0jjPNu-6--P8r-gb_4ODBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902056295</pqid></control><display><type>article</type><title>Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China</title><source>SpringerNature Journals</source><creator>Zhu, Chuanwei ; Wen, Hanjie ; Zhang, Yuxu ; Fu, Shaohong ; Fan, Haifeng ; Cloquet, Christophe</creator><creatorcontrib>Zhu, Chuanwei ; Wen, Hanjie ; Zhang, Yuxu ; Fu, Shaohong ; Fan, Haifeng ; Cloquet, Christophe</creatorcontrib><description>High-precision cadmium (Cd) isotope compositions are reported for sphalerite, galena, and smithsonite from the Fule Zn–Pb–Cd deposit, a typical Mississippi Valley-type deposit in Southwest China. Dark sphalerite has lighter δ 114/110 Cd values (0.06 to 0.46 ‰) than light sphalerite (0.43 to 0.70 ‰), and the Cd in galena is primarily in the form of sphalerite micro-inclusions with δ 114/110 Cd of −0.35 to 0.39 ‰. From early to late stages, δ 114/110 Cd values of smithsonite regularly increase from 0.19 to 0.42 ‰, whereas Cd/Zn ratios decrease from 252 to 136; the δ 114/110 Cd variation pattern of supergene smithsonite reflects kinetic Rayleigh fractionation during low-temperature processes. From the bottom to the top of the orebody, the dark sphalerite has different patterns in δ 114/110 Cd values, Cd/Zn ratios, δ 34 S values, and Fe concentrations compared to the light sphalerite, indicating that dark and light sphalerite formed by different processes. The varying patterns of δ 144/110 Cd values and Cd/Zn ratios within light sphalerite are similar to those of layered smithsonite, and the δ 144/110 Cd values have a positive correlation with δ 34 S values, indicating that Cd isotope fractionation in the light sphalerite was due to kinetic Rayleigh fractionation. Instead, in dark sphalerite, the δ 144/110 Cd values have a negative correlation with δ 34 S values and a positive correlation with the Cd/Zn ratio. Thus, it can be concluded that dark sphalerite could be modeled in terms of two-component mixing (basement fluid and host-rock fluid), which is in agreement with previous explanations for the negative correlation between δ 66 Zn and δ 34 S in some typical Zn–Pb deposits. We propose that the significant variation in Cd isotope composition observed in the Fule Zn–Pb–Cd deposit confirms that Cd isotopes can be used for tracing fluid evolution and ore formation.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-016-0691-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cadmium ; Cadmium isotopes ; Correlation ; Earth and Environmental Science ; Earth Sciences ; Fractionation ; Galena ; Geochemistry ; Geology ; Isotope composition ; Isotope fractionation ; Isotopes ; Lead ; Light ; Low temperature ; Mineral Resources ; Mineralogy ; Ratios ; Sciences of the Universe ; Sphalerite ; Zinc ; Zinc ores ; Zincblende</subject><ispartof>Mineralium deposita, 2017-06, Vol.52 (5), p.675-686</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Mineralium Deposita is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-a4ddbc26fe4770a7df05381fdae223e38cbb13c3b2deea209ed4fd2a0c771b843</citedby><cites>FETCH-LOGICAL-a439t-a4ddbc26fe4770a7df05381fdae223e38cbb13c3b2deea209ed4fd2a0c771b843</cites><orcidid>0000-0002-6678-6443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-016-0691-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-016-0691-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02915133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Chuanwei</creatorcontrib><creatorcontrib>Wen, Hanjie</creatorcontrib><creatorcontrib>Zhang, Yuxu</creatorcontrib><creatorcontrib>Fu, Shaohong</creatorcontrib><creatorcontrib>Fan, Haifeng</creatorcontrib><creatorcontrib>Cloquet, Christophe</creatorcontrib><title>Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>High-precision cadmium (Cd) isotope compositions are reported for sphalerite, galena, and smithsonite from the Fule Zn–Pb–Cd deposit, a typical Mississippi Valley-type deposit in Southwest China. Dark sphalerite has lighter δ 114/110 Cd values (0.06 to 0.46 ‰) than light sphalerite (0.43 to 0.70 ‰), and the Cd in galena is primarily in the form of sphalerite micro-inclusions with δ 114/110 Cd of −0.35 to 0.39 ‰. From early to late stages, δ 114/110 Cd values of smithsonite regularly increase from 0.19 to 0.42 ‰, whereas Cd/Zn ratios decrease from 252 to 136; the δ 114/110 Cd variation pattern of supergene smithsonite reflects kinetic Rayleigh fractionation during low-temperature processes. From the bottom to the top of the orebody, the dark sphalerite has different patterns in δ 114/110 Cd values, Cd/Zn ratios, δ 34 S values, and Fe concentrations compared to the light sphalerite, indicating that dark and light sphalerite formed by different processes. The varying patterns of δ 144/110 Cd values and Cd/Zn ratios within light sphalerite are similar to those of layered smithsonite, and the δ 144/110 Cd values have a positive correlation with δ 34 S values, indicating that Cd isotope fractionation in the light sphalerite was due to kinetic Rayleigh fractionation. Instead, in dark sphalerite, the δ 144/110 Cd values have a negative correlation with δ 34 S values and a positive correlation with the Cd/Zn ratio. Thus, it can be concluded that dark sphalerite could be modeled in terms of two-component mixing (basement fluid and host-rock fluid), which is in agreement with previous explanations for the negative correlation between δ 66 Zn and δ 34 S in some typical Zn–Pb deposits. We propose that the significant variation in Cd isotope composition observed in the Fule Zn–Pb–Cd deposit confirms that Cd isotopes can be used for tracing fluid evolution and ore formation.</description><subject>Cadmium</subject><subject>Cadmium isotopes</subject><subject>Correlation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Galena</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Isotope composition</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Lead</subject><subject>Light</subject><subject>Low temperature</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Ratios</subject><subject>Sciences of the Universe</subject><subject>Sphalerite</subject><subject>Zinc</subject><subject>Zinc ores</subject><subject>Zincblende</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8BT4LVmaSfx6W4rrDiwY-Dl5A2qZul29SmVfbfm1IRL8JkBjLP-zK8hJwjXCNAcuMAkMUBoH9xhkFyQGYYchZgGseHZAbgt2GUpcfkxLktAGQYwoy85VLtzLCjxtnetppWnSx7Yxs5Nmoa2m80XQ61pg_GubHa1tBXWdd6H_R7r1C6tc70V_TJDv3mS7ue5hvTyFNyVMna6bOfOScvy9vnfBWsH-_u88U6kCHPet-VKkoWVzpMEpCJqiDiKVZKasa45mlZFMhLXjCltWSQaRVWikkokwSLNORzcjn5bmQt2s7sZLcXVhqxWqzF-Acswwg5_0TPXkxs29mPwZ8qtnboGn-ewAwYRDHLIk_hRJWdda7T1a8tghjjFlPcwsctxrhF4jVs0jjPNu-6--P8r-gb_4ODBg</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Zhu, Chuanwei</creator><creator>Wen, Hanjie</creator><creator>Zhang, Yuxu</creator><creator>Fu, Shaohong</creator><creator>Fan, Haifeng</creator><creator>Cloquet, Christophe</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6678-6443</orcidid></search><sort><creationdate>20170601</creationdate><title>Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China</title><author>Zhu, Chuanwei ; Wen, Hanjie ; Zhang, Yuxu ; Fu, Shaohong ; Fan, Haifeng ; Cloquet, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-a4ddbc26fe4770a7df05381fdae223e38cbb13c3b2deea209ed4fd2a0c771b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cadmium</topic><topic>Cadmium isotopes</topic><topic>Correlation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Galena</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Isotope composition</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Lead</topic><topic>Light</topic><topic>Low temperature</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Ratios</topic><topic>Sciences of the Universe</topic><topic>Sphalerite</topic><topic>Zinc</topic><topic>Zinc ores</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chuanwei</creatorcontrib><creatorcontrib>Wen, Hanjie</creatorcontrib><creatorcontrib>Zhang, Yuxu</creatorcontrib><creatorcontrib>Fu, Shaohong</creatorcontrib><creatorcontrib>Fan, Haifeng</creatorcontrib><creatorcontrib>Cloquet, Christophe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chuanwei</au><au>Wen, Hanjie</au><au>Zhang, Yuxu</au><au>Fu, Shaohong</au><au>Fan, Haifeng</au><au>Cloquet, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>52</volume><issue>5</issue><spage>675</spage><epage>686</epage><pages>675-686</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>High-precision cadmium (Cd) isotope compositions are reported for sphalerite, galena, and smithsonite from the Fule Zn–Pb–Cd deposit, a typical Mississippi Valley-type deposit in Southwest China. Dark sphalerite has lighter δ 114/110 Cd values (0.06 to 0.46 ‰) than light sphalerite (0.43 to 0.70 ‰), and the Cd in galena is primarily in the form of sphalerite micro-inclusions with δ 114/110 Cd of −0.35 to 0.39 ‰. From early to late stages, δ 114/110 Cd values of smithsonite regularly increase from 0.19 to 0.42 ‰, whereas Cd/Zn ratios decrease from 252 to 136; the δ 114/110 Cd variation pattern of supergene smithsonite reflects kinetic Rayleigh fractionation during low-temperature processes. From the bottom to the top of the orebody, the dark sphalerite has different patterns in δ 114/110 Cd values, Cd/Zn ratios, δ 34 S values, and Fe concentrations compared to the light sphalerite, indicating that dark and light sphalerite formed by different processes. The varying patterns of δ 144/110 Cd values and Cd/Zn ratios within light sphalerite are similar to those of layered smithsonite, and the δ 144/110 Cd values have a positive correlation with δ 34 S values, indicating that Cd isotope fractionation in the light sphalerite was due to kinetic Rayleigh fractionation. Instead, in dark sphalerite, the δ 144/110 Cd values have a negative correlation with δ 34 S values and a positive correlation with the Cd/Zn ratio. Thus, it can be concluded that dark sphalerite could be modeled in terms of two-component mixing (basement fluid and host-rock fluid), which is in agreement with previous explanations for the negative correlation between δ 66 Zn and δ 34 S in some typical Zn–Pb deposits. We propose that the significant variation in Cd isotope composition observed in the Fule Zn–Pb–Cd deposit confirms that Cd isotopes can be used for tracing fluid evolution and ore formation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-016-0691-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6678-6443</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2017-06, Vol.52 (5), p.675-686
issn 0026-4598
1432-1866
language eng
recordid cdi_hal_primary_oai_HAL_hal_02915133v1
source SpringerNature Journals
subjects Cadmium
Cadmium isotopes
Correlation
Earth and Environmental Science
Earth Sciences
Fractionation
Galena
Geochemistry
Geology
Isotope composition
Isotope fractionation
Isotopes
Lead
Light
Low temperature
Mineral Resources
Mineralogy
Ratios
Sciences of the Universe
Sphalerite
Zinc
Zinc ores
Zincblende
title Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cadmium%20isotope%20fractionation%20in%20the%20Fule%20Mississippi%20Valley-type%20deposit,%20Southwest%20China&rft.jtitle=Mineralium%20deposita&rft.au=Zhu,%20Chuanwei&rft.date=2017-06-01&rft.volume=52&rft.issue=5&rft.spage=675&rft.epage=686&rft.pages=675-686&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-016-0691-7&rft_dat=%3Cproquest_hal_p%3E1902056295%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902056295&rft_id=info:pmid/&rfr_iscdi=true