Volatility estimation and jump detection for drift–diffusion processes

The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2020-08, Vol.217 (2), p.259-290
Hauptverfasser: Laurent, Sébastien, Shi, Shuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 2
container_start_page 259
container_title Journal of econometrics
container_volume 217
creator Laurent, Sébastien
Shi, Shuping
description The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.
doi_str_mv 10.1016/j.jeconom.2019.12.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02909690v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407619302507</els_id><sourcerecordid>2441308904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-5c9ad584344c05cbe4121263738e3a4ea14e2647e5b126b7fb80b1f709555eeb3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIEXixCFh7dh5nFBVAUWqxAW4WomzEY7SuNhJpd74B_6QL8FpKq6cVjuanZ0ZQq4pRBRoctdEDSrTmU3EgOYRZREAPyEzmqUsTLJcnJIZxMBDDmlyTi6cawBA8CyekdW7aYtet7rfB-h6vfGL6YKiq4Jm2GyDCntUB6g2Nqisrvufr-9K1_XgRnRrjULn0F2Ss7poHV4d55y8PT68Llfh-uXpeblYh8r_60Oh8qISGY85VyBUiZwyypI4jTOMC44F5cgSnqIoPVymdZlBSesUciEEYhnPye2k-1G0cmu9YbuXptBytVjLEQOWQ57ksKOeezNxvcvPwceTjRls5-1JxjmNIcuBe5aYWMoa5yzWf7IU5FiwbOSxYDkWLCmTcLi7n-7Qx91ptNIpjZ3CSlvfmayM_kfhFwlxhw4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441308904</pqid></control><display><type>article</type><title>Volatility estimation and jump detection for drift–diffusion processes</title><source>Elsevier ScienceDirect Journals</source><creator>Laurent, Sébastien ; Shi, Shuping</creator><creatorcontrib>Laurent, Sébastien ; Shi, Shuping</creatorcontrib><description>The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2019.12.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bias ; Diffusion ; Diffusion process ; Economics and Finance ; Estimating techniques ; Finite sample theory ; Humanities and Social Sciences ; Infill ; Jumps ; Nonzero drift ; Prices ; Volatility ; Volatility estimation</subject><ispartof>Journal of econometrics, 2020-08, Vol.217 (2), p.259-290</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2020</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-5c9ad584344c05cbe4121263738e3a4ea14e2647e5b126b7fb80b1f709555eeb3</citedby><cites>FETCH-LOGICAL-c483t-5c9ad584344c05cbe4121263738e3a4ea14e2647e5b126b7fb80b1f709555eeb3</cites><orcidid>0000-0001-8462-0693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407619302507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-02909690$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurent, Sébastien</creatorcontrib><creatorcontrib>Shi, Shuping</creatorcontrib><title>Volatility estimation and jump detection for drift–diffusion processes</title><title>Journal of econometrics</title><description>The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.</description><subject>Bias</subject><subject>Diffusion</subject><subject>Diffusion process</subject><subject>Economics and Finance</subject><subject>Estimating techniques</subject><subject>Finite sample theory</subject><subject>Humanities and Social Sciences</subject><subject>Infill</subject><subject>Jumps</subject><subject>Nonzero drift</subject><subject>Prices</subject><subject>Volatility</subject><subject>Volatility estimation</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIEXixCFh7dh5nFBVAUWqxAW4WomzEY7SuNhJpd74B_6QL8FpKq6cVjuanZ0ZQq4pRBRoctdEDSrTmU3EgOYRZREAPyEzmqUsTLJcnJIZxMBDDmlyTi6cawBA8CyekdW7aYtet7rfB-h6vfGL6YKiq4Jm2GyDCntUB6g2Nqisrvufr-9K1_XgRnRrjULn0F2Ss7poHV4d55y8PT68Llfh-uXpeblYh8r_60Oh8qISGY85VyBUiZwyypI4jTOMC44F5cgSnqIoPVymdZlBSesUciEEYhnPye2k-1G0cmu9YbuXptBytVjLEQOWQ57ksKOeezNxvcvPwceTjRls5-1JxjmNIcuBe5aYWMoa5yzWf7IU5FiwbOSxYDkWLCmTcLi7n-7Qx91ptNIpjZ3CSlvfmayM_kfhFwlxhw4</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Laurent, Sébastien</creator><creator>Shi, Shuping</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8462-0693</orcidid></search><sort><creationdate>20200801</creationdate><title>Volatility estimation and jump detection for drift–diffusion processes</title><author>Laurent, Sébastien ; Shi, Shuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-5c9ad584344c05cbe4121263738e3a4ea14e2647e5b126b7fb80b1f709555eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Diffusion</topic><topic>Diffusion process</topic><topic>Economics and Finance</topic><topic>Estimating techniques</topic><topic>Finite sample theory</topic><topic>Humanities and Social Sciences</topic><topic>Infill</topic><topic>Jumps</topic><topic>Nonzero drift</topic><topic>Prices</topic><topic>Volatility</topic><topic>Volatility estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurent, Sébastien</creatorcontrib><creatorcontrib>Shi, Shuping</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurent, Sébastien</au><au>Shi, Shuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volatility estimation and jump detection for drift–diffusion processes</atitle><jtitle>Journal of econometrics</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>217</volume><issue>2</issue><spage>259</spage><epage>290</epage><pages>259-290</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2019.12.004</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-8462-0693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2020-08, Vol.217 (2), p.259-290
issn 0304-4076
1872-6895
language eng
recordid cdi_hal_primary_oai_HAL_hal_02909690v1
source Elsevier ScienceDirect Journals
subjects Bias
Diffusion
Diffusion process
Economics and Finance
Estimating techniques
Finite sample theory
Humanities and Social Sciences
Infill
Jumps
Nonzero drift
Prices
Volatility
Volatility estimation
title Volatility estimation and jump detection for drift–diffusion processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volatility%20estimation%20and%20jump%20detection%20for%20drift%E2%80%93diffusion%20processes&rft.jtitle=Journal%20of%20econometrics&rft.au=Laurent,%20S%C3%A9bastien&rft.date=2020-08-01&rft.volume=217&rft.issue=2&rft.spage=259&rft.epage=290&rft.pages=259-290&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2019.12.004&rft_dat=%3Cproquest_hal_p%3E2441308904%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441308904&rft_id=info:pmid/&rft_els_id=S0304407619302507&rfr_iscdi=true