Volatility estimation and jump detection for drift–diffusion processes
The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrat...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2020-08, Vol.217 (2), p.259-290 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 2 |
container_start_page | 259 |
container_title | Journal of econometrics |
container_volume | 217 |
creator | Laurent, Sébastien Shi, Shuping |
description | The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index. |
doi_str_mv | 10.1016/j.jeconom.2019.12.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02909690v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407619302507</els_id><sourcerecordid>2441308904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-5c9ad584344c05cbe4121263738e3a4ea14e2647e5b126b7fb80b1f709555eeb3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIEXixCFh7dh5nFBVAUWqxAW4WomzEY7SuNhJpd74B_6QL8FpKq6cVjuanZ0ZQq4pRBRoctdEDSrTmU3EgOYRZREAPyEzmqUsTLJcnJIZxMBDDmlyTi6cawBA8CyekdW7aYtet7rfB-h6vfGL6YKiq4Jm2GyDCntUB6g2Nqisrvufr-9K1_XgRnRrjULn0F2Ss7poHV4d55y8PT68Llfh-uXpeblYh8r_60Oh8qISGY85VyBUiZwyypI4jTOMC44F5cgSnqIoPVymdZlBSesUciEEYhnPye2k-1G0cmu9YbuXptBytVjLEQOWQ57ksKOeezNxvcvPwceTjRls5-1JxjmNIcuBe5aYWMoa5yzWf7IU5FiwbOSxYDkWLCmTcLi7n-7Qx91ptNIpjZ3CSlvfmayM_kfhFwlxhw4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441308904</pqid></control><display><type>article</type><title>Volatility estimation and jump detection for drift–diffusion processes</title><source>Elsevier ScienceDirect Journals</source><creator>Laurent, Sébastien ; Shi, Shuping</creator><creatorcontrib>Laurent, Sébastien ; Shi, Shuping</creatorcontrib><description>The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2019.12.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bias ; Diffusion ; Diffusion process ; Economics and Finance ; Estimating techniques ; Finite sample theory ; Humanities and Social Sciences ; Infill ; Jumps ; Nonzero drift ; Prices ; Volatility ; Volatility estimation</subject><ispartof>Journal of econometrics, 2020-08, Vol.217 (2), p.259-290</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2020</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-5c9ad584344c05cbe4121263738e3a4ea14e2647e5b126b7fb80b1f709555eeb3</citedby><cites>FETCH-LOGICAL-c483t-5c9ad584344c05cbe4121263738e3a4ea14e2647e5b126b7fb80b1f709555eeb3</cites><orcidid>0000-0001-8462-0693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407619302507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-02909690$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurent, Sébastien</creatorcontrib><creatorcontrib>Shi, Shuping</creatorcontrib><title>Volatility estimation and jump detection for drift–diffusion processes</title><title>Journal of econometrics</title><description>The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.</description><subject>Bias</subject><subject>Diffusion</subject><subject>Diffusion process</subject><subject>Economics and Finance</subject><subject>Estimating techniques</subject><subject>Finite sample theory</subject><subject>Humanities and Social Sciences</subject><subject>Infill</subject><subject>Jumps</subject><subject>Nonzero drift</subject><subject>Prices</subject><subject>Volatility</subject><subject>Volatility estimation</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIEXixCFh7dh5nFBVAUWqxAW4WomzEY7SuNhJpd74B_6QL8FpKq6cVjuanZ0ZQq4pRBRoctdEDSrTmU3EgOYRZREAPyEzmqUsTLJcnJIZxMBDDmlyTi6cawBA8CyekdW7aYtet7rfB-h6vfGL6YKiq4Jm2GyDCntUB6g2Nqisrvufr-9K1_XgRnRrjULn0F2Ss7poHV4d55y8PT68Llfh-uXpeblYh8r_60Oh8qISGY85VyBUiZwyypI4jTOMC44F5cgSnqIoPVymdZlBSesUciEEYhnPye2k-1G0cmu9YbuXptBytVjLEQOWQ57ksKOeezNxvcvPwceTjRls5-1JxjmNIcuBe5aYWMoa5yzWf7IU5FiwbOSxYDkWLCmTcLi7n-7Qx91ptNIpjZ3CSlvfmayM_kfhFwlxhw4</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Laurent, Sébastien</creator><creator>Shi, Shuping</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8462-0693</orcidid></search><sort><creationdate>20200801</creationdate><title>Volatility estimation and jump detection for drift–diffusion processes</title><author>Laurent, Sébastien ; Shi, Shuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-5c9ad584344c05cbe4121263738e3a4ea14e2647e5b126b7fb80b1f709555eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Diffusion</topic><topic>Diffusion process</topic><topic>Economics and Finance</topic><topic>Estimating techniques</topic><topic>Finite sample theory</topic><topic>Humanities and Social Sciences</topic><topic>Infill</topic><topic>Jumps</topic><topic>Nonzero drift</topic><topic>Prices</topic><topic>Volatility</topic><topic>Volatility estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurent, Sébastien</creatorcontrib><creatorcontrib>Shi, Shuping</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurent, Sébastien</au><au>Shi, Shuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volatility estimation and jump detection for drift–diffusion processes</atitle><jtitle>Journal of econometrics</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>217</volume><issue>2</issue><spage>259</spage><epage>290</epage><pages>259-290</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>The logarithmic prices of financial assets are conventionally assumed to follow a drift–diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2019.12.004</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-8462-0693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2020-08, Vol.217 (2), p.259-290 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02909690v1 |
source | Elsevier ScienceDirect Journals |
subjects | Bias Diffusion Diffusion process Economics and Finance Estimating techniques Finite sample theory Humanities and Social Sciences Infill Jumps Nonzero drift Prices Volatility Volatility estimation |
title | Volatility estimation and jump detection for drift–diffusion processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volatility%20estimation%20and%20jump%20detection%20for%20drift%E2%80%93diffusion%20processes&rft.jtitle=Journal%20of%20econometrics&rft.au=Laurent,%20S%C3%A9bastien&rft.date=2020-08-01&rft.volume=217&rft.issue=2&rft.spage=259&rft.epage=290&rft.pages=259-290&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2019.12.004&rft_dat=%3Cproquest_hal_p%3E2441308904%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441308904&rft_id=info:pmid/&rft_els_id=S0304407619302507&rfr_iscdi=true |