Elliptic dimers on minimal graphs and genus 1 Harnack curves
This paper provides a comprehensive study of the dimer model on infinite minimal graphs with Fock's elliptic weights [Foc15]. Specific instances of such models were studied in [BdTR17, BdTR18, dT17]; we now handle the general genus 1 case, thus proving a non-trivial extension of the genus 0 res...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Communications in mathematical physics |
container_volume | |
creator | Boutillier, Cédric Cimasoni, David de Tilière, Béatrice |
description | This paper provides a comprehensive study of the dimer model on infinite minimal graphs with Fock's elliptic weights [Foc15]. Specific instances of such models were studied in [BdTR17, BdTR18, dT17]; we now handle the general genus 1 case, thus proving a non-trivial extension of the genus 0 results of [Ken02, KO06] on isora-dial critical models. We give an explicit local expression for a two-parameter family of inverses of the Kasteleyn operator with no periodicity assumption on the underlying graph. When the minimal graph satisfies a natural condition, we construct a family of dimer Gibbs measures from these inverses, and describe the phase diagram of the model by deriving asymptotics of correlations in each phase. In the Z 2-periodic case, this gives an alternative description of the full set of ergodic Gibbs measures constructed in [KOS06]. We also establish a correspondence between elliptic dimer models on periodic minimal graphs and Harnack curves of genus 1. Finally, we show that a bipartite dimer model is invariant under the shrinking/expanding of 2-valent vertices and spider moves if and only if the associated Kasteleyn coefficients are antisymmetric and satisfy Fay's trisecant identity. |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02908609v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02908609v2</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_02908609v23</originalsourceid><addsrcrecordid>eNqVjEsKwjAUAIMoWD93eFsXhZdUggE3IpUuXLoPjzZto2laElvw9ip4AVcDwzAzlvB9JlJUXM5ZgsgxzSSXS7aK8Y6ISkiZsGPunB2etoTKdiZE6D101tuOHDSBhjYC-Qoa48cIHAoKnsoHlGOYTNywRU0umu2Pa7a75Ldzkbbk9BA-k_DSPVldnK7661AoPEhUk8j-ad-i0Dwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elliptic dimers on minimal graphs and genus 1 Harnack curves</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boutillier, Cédric ; Cimasoni, David ; de Tilière, Béatrice</creator><creatorcontrib>Boutillier, Cédric ; Cimasoni, David ; de Tilière, Béatrice</creatorcontrib><description>This paper provides a comprehensive study of the dimer model on infinite minimal graphs with Fock's elliptic weights [Foc15]. Specific instances of such models were studied in [BdTR17, BdTR18, dT17]; we now handle the general genus 1 case, thus proving a non-trivial extension of the genus 0 results of [Ken02, KO06] on isora-dial critical models. We give an explicit local expression for a two-parameter family of inverses of the Kasteleyn operator with no periodicity assumption on the underlying graph. When the minimal graph satisfies a natural condition, we construct a family of dimer Gibbs measures from these inverses, and describe the phase diagram of the model by deriving asymptotics of correlations in each phase. In the Z 2-periodic case, this gives an alternative description of the full set of ergodic Gibbs measures constructed in [KOS06]. We also establish a correspondence between elliptic dimer models on periodic minimal graphs and Harnack curves of genus 1. Finally, we show that a bipartite dimer model is invariant under the shrinking/expanding of 2-valent vertices and spider moves if and only if the associated Kasteleyn coefficients are antisymmetric and satisfy Fay's trisecant identity.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Combinatorics ; Mathematical Physics ; Mathematics ; Probability</subject><ispartof>Communications in mathematical physics, 2022</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2019-7491 ; 0000-0002-2019-7491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02908609$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boutillier, Cédric</creatorcontrib><creatorcontrib>Cimasoni, David</creatorcontrib><creatorcontrib>de Tilière, Béatrice</creatorcontrib><title>Elliptic dimers on minimal graphs and genus 1 Harnack curves</title><title>Communications in mathematical physics</title><description>This paper provides a comprehensive study of the dimer model on infinite minimal graphs with Fock's elliptic weights [Foc15]. Specific instances of such models were studied in [BdTR17, BdTR18, dT17]; we now handle the general genus 1 case, thus proving a non-trivial extension of the genus 0 results of [Ken02, KO06] on isora-dial critical models. We give an explicit local expression for a two-parameter family of inverses of the Kasteleyn operator with no periodicity assumption on the underlying graph. When the minimal graph satisfies a natural condition, we construct a family of dimer Gibbs measures from these inverses, and describe the phase diagram of the model by deriving asymptotics of correlations in each phase. In the Z 2-periodic case, this gives an alternative description of the full set of ergodic Gibbs measures constructed in [KOS06]. We also establish a correspondence between elliptic dimer models on periodic minimal graphs and Harnack curves of genus 1. Finally, we show that a bipartite dimer model is invariant under the shrinking/expanding of 2-valent vertices and spider moves if and only if the associated Kasteleyn coefficients are antisymmetric and satisfy Fay's trisecant identity.</description><subject>Combinatorics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Probability</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVjEsKwjAUAIMoWD93eFsXhZdUggE3IpUuXLoPjzZto2laElvw9ip4AVcDwzAzlvB9JlJUXM5ZgsgxzSSXS7aK8Y6ISkiZsGPunB2etoTKdiZE6D101tuOHDSBhjYC-Qoa48cIHAoKnsoHlGOYTNywRU0umu2Pa7a75Ldzkbbk9BA-k_DSPVldnK7661AoPEhUk8j-ad-i0Dwc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Boutillier, Cédric</creator><creator>Cimasoni, David</creator><creator>de Tilière, Béatrice</creator><general>Springer Verlag</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2019-7491</orcidid><orcidid>https://orcid.org/0000-0002-2019-7491</orcidid></search><sort><creationdate>2022</creationdate><title>Elliptic dimers on minimal graphs and genus 1 Harnack curves</title><author>Boutillier, Cédric ; Cimasoni, David ; de Tilière, Béatrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_02908609v23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boutillier, Cédric</creatorcontrib><creatorcontrib>Cimasoni, David</creatorcontrib><creatorcontrib>de Tilière, Béatrice</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boutillier, Cédric</au><au>Cimasoni, David</au><au>de Tilière, Béatrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elliptic dimers on minimal graphs and genus 1 Harnack curves</atitle><jtitle>Communications in mathematical physics</jtitle><date>2022</date><risdate>2022</risdate><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>This paper provides a comprehensive study of the dimer model on infinite minimal graphs with Fock's elliptic weights [Foc15]. Specific instances of such models were studied in [BdTR17, BdTR18, dT17]; we now handle the general genus 1 case, thus proving a non-trivial extension of the genus 0 results of [Ken02, KO06] on isora-dial critical models. We give an explicit local expression for a two-parameter family of inverses of the Kasteleyn operator with no periodicity assumption on the underlying graph. When the minimal graph satisfies a natural condition, we construct a family of dimer Gibbs measures from these inverses, and describe the phase diagram of the model by deriving asymptotics of correlations in each phase. In the Z 2-periodic case, this gives an alternative description of the full set of ergodic Gibbs measures constructed in [KOS06]. We also establish a correspondence between elliptic dimer models on periodic minimal graphs and Harnack curves of genus 1. Finally, we show that a bipartite dimer model is invariant under the shrinking/expanding of 2-valent vertices and spider moves if and only if the associated Kasteleyn coefficients are antisymmetric and satisfy Fay's trisecant identity.</abstract><pub>Springer Verlag</pub><orcidid>https://orcid.org/0000-0002-2019-7491</orcidid><orcidid>https://orcid.org/0000-0002-2019-7491</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2022 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02908609v2 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorics Mathematical Physics Mathematics Probability |
title | Elliptic dimers on minimal graphs and genus 1 Harnack curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elliptic%20dimers%20on%20minimal%20graphs%20and%20genus%201%20Harnack%20curves&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Boutillier,%20C%C3%A9dric&rft.date=2022&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_02908609v2%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |