Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques

Specification of expected runout distances and related return periods are the first and most important steps for zoning in snow avalanche prone terrain. In the past, runout distances of extreme events have often been evaluated with physically- or statistical-based numerical models. More recently, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cold regions science and technology 2014-03, Vol.99, p.12-26
Hauptverfasser: Schläppy, Romain, Eckert, Nicolas, Jomelli, Vincent, Stoffel, Markus, Grancher, Delphine, Brunstein, Daniel, Naaim, Mohamed, Deschatres, Michaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue
container_start_page 12
container_title Cold regions science and technology
container_volume 99
creator Schläppy, Romain
Eckert, Nicolas
Jomelli, Vincent
Stoffel, Markus
Grancher, Delphine
Brunstein, Daniel
Naaim, Mohamed
Deschatres, Michaël
description Specification of expected runout distances and related return periods are the first and most important steps for zoning in snow avalanche prone terrain. In the past, runout distances of extreme events have often been evaluated with physically- or statistical-based numerical models. More recently, the statistical-dynamical modeling approach has been put forward, as it has the advantage of providing information on avalanche velocity, pressure, and flow depth at each point along a path quantified in terms of probabilities. Most often, calibration of statistical-dynamical modeling is based on existing data from historical archives so that current events with return periods ≤30yr can normally be simulated with high confidence, but uncertainty increases as soon as one want to deal with longer return periods, thus calling for validation procedures to corroborate model predictions. In this context, we used dendrogeomorphic records of trees impacted by snow avalanches in their runout zone to reconstruct past activity in two avalanche paths of the French Alps. Based on the reconstructed distribution of runout distances of 25 events and mean event frequencies, we successfully derived runout values for events with return periods of ≤300yr. Comparison of relations between runout distance and return periods between dendrogeomorphic data and predictions of a locally calibrated statistical-dynamical model show good agreement. Within the classical intervals used in hazard zoning (i.e. 10–300yr), mean and mean square errors amounted to ~20 and 30−45 m, respectively. These results suggest that dendrogeomorphic time series of snow avalanches can yield valuable information to anticipate future extreme events and that the employed statistical-dynamical model can be used with reasonable confidence to predict runout distances of avalanches with high return periods, despite some uncertainty inherent to the limits of both approaches. •Statistical-dynamical avalanche models can simulate current events with high accuracy•Modeling procedures need to be validated with archival data to improve results•Runout distances and return periods can be reconstructed best with tree-ring series•Good agreement between simulated runout distances and patterns of disturbed trees•Dendrogeomorphic data are extremely valuable data for avalanche hazard zoning
doi_str_mv 10.1016/j.coldregions.2013.12.001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02905259v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165232X13001900</els_id><sourcerecordid>1642209005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d557a7e38523b2e5c046579ab7ed391c4a3b3007cc7a0eda929ebc1848f0aee43</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxiNEJZaWdzAHJDgk-E8cx8dqRSnSSlwAcbNm7UnXq8Re7OxCX6DPjcNWFceevtHoN_ON5quqt4w2jLLu476xcXQJ73wMueGUiYbxhlL2olqxXvFatS17Wa0KK2su-M9X1euc9wXotBSr6uEHjN7BXMZJHAj-mRNOSHKIvwmcYIRgd5gJBEcSjjDjovMxBXLA5KPLxBU9lfaQ4kSA5Lksy7O3MNbuPsC0VGSKDkdyzD7ckeKAdfpXod0F_-uI-aq6GGDM-OZRL6vvN5--rW_rzdfPX9bXm9q2ks21k1KBQtFLLrYcpaVtJ5WGrUInNLMtiK2gVFmrgKIDzTVuLevbfqCA2IrL6sN57w5Gc0h-gnRvInhze70xS49yTSWX-sQK-_7MHlJcbpzN5LPFsfwE4zEb1rWcU02pfAbKlVayb2lB9Rm1KeaccHg6g1GzRGr25r9IzRKpYdyUxMrsu0cbyOWrQyrp-Py0gPdCdZJ2hVufOSyvPHlMJluPwaLzCe1sXPTPcPsL8z2_iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627975840</pqid></control><display><type>article</type><title>Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schläppy, Romain ; Eckert, Nicolas ; Jomelli, Vincent ; Stoffel, Markus ; Grancher, Delphine ; Brunstein, Daniel ; Naaim, Mohamed ; Deschatres, Michaël</creator><creatorcontrib>Schläppy, Romain ; Eckert, Nicolas ; Jomelli, Vincent ; Stoffel, Markus ; Grancher, Delphine ; Brunstein, Daniel ; Naaim, Mohamed ; Deschatres, Michaël</creatorcontrib><description>Specification of expected runout distances and related return periods are the first and most important steps for zoning in snow avalanche prone terrain. In the past, runout distances of extreme events have often been evaluated with physically- or statistical-based numerical models. More recently, the statistical-dynamical modeling approach has been put forward, as it has the advantage of providing information on avalanche velocity, pressure, and flow depth at each point along a path quantified in terms of probabilities. Most often, calibration of statistical-dynamical modeling is based on existing data from historical archives so that current events with return periods ≤30yr can normally be simulated with high confidence, but uncertainty increases as soon as one want to deal with longer return periods, thus calling for validation procedures to corroborate model predictions. In this context, we used dendrogeomorphic records of trees impacted by snow avalanches in their runout zone to reconstruct past activity in two avalanche paths of the French Alps. Based on the reconstructed distribution of runout distances of 25 events and mean event frequencies, we successfully derived runout values for events with return periods of ≤300yr. Comparison of relations between runout distance and return periods between dendrogeomorphic data and predictions of a locally calibrated statistical-dynamical model show good agreement. Within the classical intervals used in hazard zoning (i.e. 10–300yr), mean and mean square errors amounted to ~20 and 30−45 m, respectively. These results suggest that dendrogeomorphic time series of snow avalanches can yield valuable information to anticipate future extreme events and that the employed statistical-dynamical model can be used with reasonable confidence to predict runout distances of avalanches with high return periods, despite some uncertainty inherent to the limits of both approaches. •Statistical-dynamical avalanche models can simulate current events with high accuracy•Modeling procedures need to be validated with archival data to improve results•Runout distances and return periods can be reconstructed best with tree-ring series•Good agreement between simulated runout distances and patterns of disturbed trees•Dendrogeomorphic data are extremely valuable data for avalanche hazard zoning</description><identifier>ISSN: 0165-232X</identifier><identifier>EISSN: 1872-7441</identifier><identifier>DOI: 10.1016/j.coldregions.2013.12.001</identifier><identifier>CODEN: CRSTDL</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Avalanches ; Calibration ; Confidence ; Confidence intervals ; Dendrogeomorphology ; Earth, ocean, space ; Environment and Society ; Environmental Engineering ; Environmental Sciences ; Exact sciences and technology ; External geophysics ; Extreme values ; Global Changes ; Hazard zoning ; Mathematical models ; Return period ; Runout distance ; Snow avalanche ; Snow avalanches ; Snow. Ice. Glaciers ; Statistical-dynamical model ; Zoning</subject><ispartof>Cold regions science and technology, 2014-03, Vol.99, p.12-26</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d557a7e38523b2e5c046579ab7ed391c4a3b3007cc7a0eda929ebc1848f0aee43</citedby><cites>FETCH-LOGICAL-c451t-d557a7e38523b2e5c046579ab7ed391c4a3b3007cc7a0eda929ebc1848f0aee43</cites><orcidid>0009-0006-8932-8345 ; 0000-0002-4512-5216 ; 0000-0003-0816-1303 ; 0000-0002-1880-8820 ; 0000-0001-5496-8349 ; 0000-0003-1107-4964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165232X13001900$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28376506$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02905259$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schläppy, Romain</creatorcontrib><creatorcontrib>Eckert, Nicolas</creatorcontrib><creatorcontrib>Jomelli, Vincent</creatorcontrib><creatorcontrib>Stoffel, Markus</creatorcontrib><creatorcontrib>Grancher, Delphine</creatorcontrib><creatorcontrib>Brunstein, Daniel</creatorcontrib><creatorcontrib>Naaim, Mohamed</creatorcontrib><creatorcontrib>Deschatres, Michaël</creatorcontrib><title>Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques</title><title>Cold regions science and technology</title><description>Specification of expected runout distances and related return periods are the first and most important steps for zoning in snow avalanche prone terrain. In the past, runout distances of extreme events have often been evaluated with physically- or statistical-based numerical models. More recently, the statistical-dynamical modeling approach has been put forward, as it has the advantage of providing information on avalanche velocity, pressure, and flow depth at each point along a path quantified in terms of probabilities. Most often, calibration of statistical-dynamical modeling is based on existing data from historical archives so that current events with return periods ≤30yr can normally be simulated with high confidence, but uncertainty increases as soon as one want to deal with longer return periods, thus calling for validation procedures to corroborate model predictions. In this context, we used dendrogeomorphic records of trees impacted by snow avalanches in their runout zone to reconstruct past activity in two avalanche paths of the French Alps. Based on the reconstructed distribution of runout distances of 25 events and mean event frequencies, we successfully derived runout values for events with return periods of ≤300yr. Comparison of relations between runout distance and return periods between dendrogeomorphic data and predictions of a locally calibrated statistical-dynamical model show good agreement. Within the classical intervals used in hazard zoning (i.e. 10–300yr), mean and mean square errors amounted to ~20 and 30−45 m, respectively. These results suggest that dendrogeomorphic time series of snow avalanches can yield valuable information to anticipate future extreme events and that the employed statistical-dynamical model can be used with reasonable confidence to predict runout distances of avalanches with high return periods, despite some uncertainty inherent to the limits of both approaches. •Statistical-dynamical avalanche models can simulate current events with high accuracy•Modeling procedures need to be validated with archival data to improve results•Runout distances and return periods can be reconstructed best with tree-ring series•Good agreement between simulated runout distances and patterns of disturbed trees•Dendrogeomorphic data are extremely valuable data for avalanche hazard zoning</description><subject>Avalanches</subject><subject>Calibration</subject><subject>Confidence</subject><subject>Confidence intervals</subject><subject>Dendrogeomorphology</subject><subject>Earth, ocean, space</subject><subject>Environment and Society</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Extreme values</subject><subject>Global Changes</subject><subject>Hazard zoning</subject><subject>Mathematical models</subject><subject>Return period</subject><subject>Runout distance</subject><subject>Snow avalanche</subject><subject>Snow avalanches</subject><subject>Snow. Ice. Glaciers</subject><subject>Statistical-dynamical model</subject><subject>Zoning</subject><issn>0165-232X</issn><issn>1872-7441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9u1DAQxiNEJZaWdzAHJDgk-E8cx8dqRSnSSlwAcbNm7UnXq8Re7OxCX6DPjcNWFceevtHoN_ON5quqt4w2jLLu476xcXQJ73wMueGUiYbxhlL2olqxXvFatS17Wa0KK2su-M9X1euc9wXotBSr6uEHjN7BXMZJHAj-mRNOSHKIvwmcYIRgd5gJBEcSjjDjovMxBXLA5KPLxBU9lfaQ4kSA5Lksy7O3MNbuPsC0VGSKDkdyzD7ckeKAdfpXod0F_-uI-aq6GGDM-OZRL6vvN5--rW_rzdfPX9bXm9q2ks21k1KBQtFLLrYcpaVtJ5WGrUInNLMtiK2gVFmrgKIDzTVuLevbfqCA2IrL6sN57w5Gc0h-gnRvInhze70xS49yTSWX-sQK-_7MHlJcbpzN5LPFsfwE4zEb1rWcU02pfAbKlVayb2lB9Rm1KeaccHg6g1GzRGr25r9IzRKpYdyUxMrsu0cbyOWrQyrp-Py0gPdCdZJ2hVufOSyvPHlMJluPwaLzCe1sXPTPcPsL8z2_iw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Schläppy, Romain</creator><creator>Eckert, Nicolas</creator><creator>Jomelli, Vincent</creator><creator>Stoffel, Markus</creator><creator>Grancher, Delphine</creator><creator>Brunstein, Daniel</creator><creator>Naaim, Mohamed</creator><creator>Deschatres, Michaël</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0006-8932-8345</orcidid><orcidid>https://orcid.org/0000-0002-4512-5216</orcidid><orcidid>https://orcid.org/0000-0003-0816-1303</orcidid><orcidid>https://orcid.org/0000-0002-1880-8820</orcidid><orcidid>https://orcid.org/0000-0001-5496-8349</orcidid><orcidid>https://orcid.org/0000-0003-1107-4964</orcidid></search><sort><creationdate>20140301</creationdate><title>Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques</title><author>Schläppy, Romain ; Eckert, Nicolas ; Jomelli, Vincent ; Stoffel, Markus ; Grancher, Delphine ; Brunstein, Daniel ; Naaim, Mohamed ; Deschatres, Michaël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d557a7e38523b2e5c046579ab7ed391c4a3b3007cc7a0eda929ebc1848f0aee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Avalanches</topic><topic>Calibration</topic><topic>Confidence</topic><topic>Confidence intervals</topic><topic>Dendrogeomorphology</topic><topic>Earth, ocean, space</topic><topic>Environment and Society</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Extreme values</topic><topic>Global Changes</topic><topic>Hazard zoning</topic><topic>Mathematical models</topic><topic>Return period</topic><topic>Runout distance</topic><topic>Snow avalanche</topic><topic>Snow avalanches</topic><topic>Snow. Ice. Glaciers</topic><topic>Statistical-dynamical model</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schläppy, Romain</creatorcontrib><creatorcontrib>Eckert, Nicolas</creatorcontrib><creatorcontrib>Jomelli, Vincent</creatorcontrib><creatorcontrib>Stoffel, Markus</creatorcontrib><creatorcontrib>Grancher, Delphine</creatorcontrib><creatorcontrib>Brunstein, Daniel</creatorcontrib><creatorcontrib>Naaim, Mohamed</creatorcontrib><creatorcontrib>Deschatres, Michaël</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cold regions science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schläppy, Romain</au><au>Eckert, Nicolas</au><au>Jomelli, Vincent</au><au>Stoffel, Markus</au><au>Grancher, Delphine</au><au>Brunstein, Daniel</au><au>Naaim, Mohamed</au><au>Deschatres, Michaël</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques</atitle><jtitle>Cold regions science and technology</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>99</volume><spage>12</spage><epage>26</epage><pages>12-26</pages><issn>0165-232X</issn><eissn>1872-7441</eissn><coden>CRSTDL</coden><abstract>Specification of expected runout distances and related return periods are the first and most important steps for zoning in snow avalanche prone terrain. In the past, runout distances of extreme events have often been evaluated with physically- or statistical-based numerical models. More recently, the statistical-dynamical modeling approach has been put forward, as it has the advantage of providing information on avalanche velocity, pressure, and flow depth at each point along a path quantified in terms of probabilities. Most often, calibration of statistical-dynamical modeling is based on existing data from historical archives so that current events with return periods ≤30yr can normally be simulated with high confidence, but uncertainty increases as soon as one want to deal with longer return periods, thus calling for validation procedures to corroborate model predictions. In this context, we used dendrogeomorphic records of trees impacted by snow avalanches in their runout zone to reconstruct past activity in two avalanche paths of the French Alps. Based on the reconstructed distribution of runout distances of 25 events and mean event frequencies, we successfully derived runout values for events with return periods of ≤300yr. Comparison of relations between runout distance and return periods between dendrogeomorphic data and predictions of a locally calibrated statistical-dynamical model show good agreement. Within the classical intervals used in hazard zoning (i.e. 10–300yr), mean and mean square errors amounted to ~20 and 30−45 m, respectively. These results suggest that dendrogeomorphic time series of snow avalanches can yield valuable information to anticipate future extreme events and that the employed statistical-dynamical model can be used with reasonable confidence to predict runout distances of avalanches with high return periods, despite some uncertainty inherent to the limits of both approaches. •Statistical-dynamical avalanche models can simulate current events with high accuracy•Modeling procedures need to be validated with archival data to improve results•Runout distances and return periods can be reconstructed best with tree-ring series•Good agreement between simulated runout distances and patterns of disturbed trees•Dendrogeomorphic data are extremely valuable data for avalanche hazard zoning</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.coldregions.2013.12.001</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0006-8932-8345</orcidid><orcidid>https://orcid.org/0000-0002-4512-5216</orcidid><orcidid>https://orcid.org/0000-0003-0816-1303</orcidid><orcidid>https://orcid.org/0000-0002-1880-8820</orcidid><orcidid>https://orcid.org/0000-0001-5496-8349</orcidid><orcidid>https://orcid.org/0000-0003-1107-4964</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-232X
ispartof Cold regions science and technology, 2014-03, Vol.99, p.12-26
issn 0165-232X
1872-7441
language eng
recordid cdi_hal_primary_oai_HAL_hal_02905259v1
source ScienceDirect Journals (5 years ago - present)
subjects Avalanches
Calibration
Confidence
Confidence intervals
Dendrogeomorphology
Earth, ocean, space
Environment and Society
Environmental Engineering
Environmental Sciences
Exact sciences and technology
External geophysics
Extreme values
Global Changes
Hazard zoning
Mathematical models
Return period
Runout distance
Snow avalanche
Snow avalanches
Snow. Ice. Glaciers
Statistical-dynamical model
Zoning
title Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20extreme%20snow%20avalanches%20and%20related%20return%20periods%20derived%20from%20a%20statistical-dynamical%20model%20using%20tree-ring%20techniques&rft.jtitle=Cold%20regions%20science%20and%20technology&rft.au=Schl%C3%A4ppy,%20Romain&rft.date=2014-03-01&rft.volume=99&rft.spage=12&rft.epage=26&rft.pages=12-26&rft.issn=0165-232X&rft.eissn=1872-7441&rft.coden=CRSTDL&rft_id=info:doi/10.1016/j.coldregions.2013.12.001&rft_dat=%3Cproquest_hal_p%3E1642209005%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627975840&rft_id=info:pmid/&rft_els_id=S0165232X13001900&rfr_iscdi=true