The Effects of Background Zonal and Meridional Winds on ENSO in a Coupled GCM

Changes in background zonal wind in the tropical Pacific are often invoked to explain changes in ENSO properties. However, the sensitivity of ENSO to mean zonal winds has been thoroughly explored only in intermediate coupled models (following Zebiak and Cane), not in coupled GCMs. The role of mean m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2020-03, Vol.33 (6), p.2075-2091
Hauptverfasser: Zhao, Bowen, Fedorov, Alexey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2091
container_issue 6
container_start_page 2075
container_title Journal of climate
container_volume 33
creator Zhao, Bowen
Fedorov, Alexey
description Changes in background zonal wind in the tropical Pacific are often invoked to explain changes in ENSO properties. However, the sensitivity of ENSO to mean zonal winds has been thoroughly explored only in intermediate coupled models (following Zebiak and Cane), not in coupled GCMs. The role of mean meridional winds has received even less attention. Accordingly, the goal of this study is to examine systematically the effects of both zonal (equatorial) and meridional (cross-equatorial) background winds on ENSO using targeted experiments with a comprehensive climate model (CESM). Changes in the mean winds are generated by imposing heat flux forcing in two confined regions at a sufficient distance north and south of the equator. We find that the strengthening of either wind component reduces ENSO amplitude, especially eastern Pacific SST variability, and inhibits meridional swings of the intertropical convergence zone (ITCZ). The effect of zonal winds is generally stronger than that of meridional winds. A stability analysis reveals that the strengthening of zonal and meridional winds weakens the ENSO key positive feedbacks, specifically the zonal advection and thermocline feedbacks, which explains these changes. Zonal wind enhancement also intensifies mean upwelling and hence dynamical damping, leading to a further weakening of El Niño events. Ultimately, this study argues that the zonal and, to a lesser extent, meridional wind strengthening of the past decades may have contributed to the observed shift of El Niño characteristics after the year 2000.
doi_str_mv 10.1175/jcli-d-18-0822.1
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02904230v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26916849</jstor_id><sourcerecordid>26916849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5a21c306bd73fa3610c411e991ec133569822d756f967176a33322ce104aed053</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3L0LAk4fVmXzt5qhr_aK1ByuClxCzWd26bmrSCv73bq14mpnHbx68R8ghwiliLs_mrm2yKsMig4KxU9wiA5QMMhCCbZMBFFpkRS7lLtlLaQ6ATAEMyGT25umorr1bJhpqemHd-2sMq66iz6GzLbX9NvGxqZrf86npqh7s6Oj-YUqbjlpahtWi9RW9Lif7ZKe2bfIHf3NIHq9Gs_ImG0-vb8vzceYEl8tMWoaOg3qpcl5brhCcQPRao3fIuVS6j1DlUtVa5ZgryzlnzHkEYX0Fkg_Jycb3zbZmEZsPG79NsI25OR-btQZMg2AcvrBnjzfsIobPlU9LMw-r2GdJhnHNlBAF5D0FG8rFkFL09b8tglkXbO7K8a25NFiYdcFmbXy0eZmnZYj_PFMaVSE0_wGR4XPB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392644807</pqid></control><display><type>article</type><title>The Effects of Background Zonal and Meridional Winds on ENSO in a Coupled GCM</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Zhao, Bowen ; Fedorov, Alexey</creator><creatorcontrib>Zhao, Bowen ; Fedorov, Alexey</creatorcontrib><description>Changes in background zonal wind in the tropical Pacific are often invoked to explain changes in ENSO properties. However, the sensitivity of ENSO to mean zonal winds has been thoroughly explored only in intermediate coupled models (following Zebiak and Cane), not in coupled GCMs. The role of mean meridional winds has received even less attention. Accordingly, the goal of this study is to examine systematically the effects of both zonal (equatorial) and meridional (cross-equatorial) background winds on ENSO using targeted experiments with a comprehensive climate model (CESM). Changes in the mean winds are generated by imposing heat flux forcing in two confined regions at a sufficient distance north and south of the equator. We find that the strengthening of either wind component reduces ENSO amplitude, especially eastern Pacific SST variability, and inhibits meridional swings of the intertropical convergence zone (ITCZ). The effect of zonal winds is generally stronger than that of meridional winds. A stability analysis reveals that the strengthening of zonal and meridional winds weakens the ENSO key positive feedbacks, specifically the zonal advection and thermocline feedbacks, which explains these changes. Zonal wind enhancement also intensifies mean upwelling and hence dynamical damping, leading to a further weakening of El Niño events. Ultimately, this study argues that the zonal and, to a lesser extent, meridional wind strengthening of the past decades may have contributed to the observed shift of El Niño characteristics after the year 2000.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-18-0822.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>20th century ; Advection ; Climate ; Climate change ; Climate models ; Convergence zones ; Damping ; Earth Sciences ; El Nino ; El Nino events ; El Nino phenomena ; El Nino-Southern Oscillation event ; Equator ; Experiments ; Geophysics ; Heat flux ; Heat transfer ; Intertropical convergence zone ; Mean winds ; Meridional wind ; Ocean circulation ; Physics ; Precipitation ; Sciences of the Universe ; Sea surface ; Southern Oscillation ; Stability ; Stability analysis ; Studies ; Surface temperature ; Thermocline ; Trends ; Tropical climate ; Upwelling ; Wind ; Wind effects ; Winds ; Zonal winds</subject><ispartof>Journal of climate, 2020-03, Vol.33 (6), p.2075-2091</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society Mar 2020</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5a21c306bd73fa3610c411e991ec133569822d756f967176a33322ce104aed053</citedby><cites>FETCH-LOGICAL-c435t-5a21c306bd73fa3610c411e991ec133569822d756f967176a33322ce104aed053</cites><orcidid>0000-0001-5428-1117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26916849$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26916849$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02904230$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Bowen</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><title>The Effects of Background Zonal and Meridional Winds on ENSO in a Coupled GCM</title><title>Journal of climate</title><description>Changes in background zonal wind in the tropical Pacific are often invoked to explain changes in ENSO properties. However, the sensitivity of ENSO to mean zonal winds has been thoroughly explored only in intermediate coupled models (following Zebiak and Cane), not in coupled GCMs. The role of mean meridional winds has received even less attention. Accordingly, the goal of this study is to examine systematically the effects of both zonal (equatorial) and meridional (cross-equatorial) background winds on ENSO using targeted experiments with a comprehensive climate model (CESM). Changes in the mean winds are generated by imposing heat flux forcing in two confined regions at a sufficient distance north and south of the equator. We find that the strengthening of either wind component reduces ENSO amplitude, especially eastern Pacific SST variability, and inhibits meridional swings of the intertropical convergence zone (ITCZ). The effect of zonal winds is generally stronger than that of meridional winds. A stability analysis reveals that the strengthening of zonal and meridional winds weakens the ENSO key positive feedbacks, specifically the zonal advection and thermocline feedbacks, which explains these changes. Zonal wind enhancement also intensifies mean upwelling and hence dynamical damping, leading to a further weakening of El Niño events. Ultimately, this study argues that the zonal and, to a lesser extent, meridional wind strengthening of the past decades may have contributed to the observed shift of El Niño characteristics after the year 2000.</description><subject>20th century</subject><subject>Advection</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Convergence zones</subject><subject>Damping</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino events</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Equator</subject><subject>Experiments</subject><subject>Geophysics</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Intertropical convergence zone</subject><subject>Mean winds</subject><subject>Meridional wind</subject><subject>Ocean circulation</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Sciences of the Universe</subject><subject>Sea surface</subject><subject>Southern Oscillation</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Surface temperature</subject><subject>Thermocline</subject><subject>Trends</subject><subject>Tropical climate</subject><subject>Upwelling</subject><subject>Wind</subject><subject>Wind effects</subject><subject>Winds</subject><subject>Zonal winds</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3L0LAk4fVmXzt5qhr_aK1ByuClxCzWd26bmrSCv73bq14mpnHbx68R8ghwiliLs_mrm2yKsMig4KxU9wiA5QMMhCCbZMBFFpkRS7lLtlLaQ6ATAEMyGT25umorr1bJhpqemHd-2sMq66iz6GzLbX9NvGxqZrf86npqh7s6Oj-YUqbjlpahtWi9RW9Lif7ZKe2bfIHf3NIHq9Gs_ImG0-vb8vzceYEl8tMWoaOg3qpcl5brhCcQPRao3fIuVS6j1DlUtVa5ZgryzlnzHkEYX0Fkg_Jycb3zbZmEZsPG79NsI25OR-btQZMg2AcvrBnjzfsIobPlU9LMw-r2GdJhnHNlBAF5D0FG8rFkFL09b8tglkXbO7K8a25NFiYdcFmbXy0eZmnZYj_PFMaVSE0_wGR4XPB</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Zhao, Bowen</creator><creator>Fedorov, Alexey</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5428-1117</orcidid></search><sort><creationdate>20200315</creationdate><title>The Effects of Background Zonal and Meridional Winds on ENSO in a Coupled GCM</title><author>Zhao, Bowen ; Fedorov, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5a21c306bd73fa3610c411e991ec133569822d756f967176a33322ce104aed053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>20th century</topic><topic>Advection</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Convergence zones</topic><topic>Damping</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino events</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Equator</topic><topic>Experiments</topic><topic>Geophysics</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Intertropical convergence zone</topic><topic>Mean winds</topic><topic>Meridional wind</topic><topic>Ocean circulation</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Sciences of the Universe</topic><topic>Sea surface</topic><topic>Southern Oscillation</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Surface temperature</topic><topic>Thermocline</topic><topic>Trends</topic><topic>Tropical climate</topic><topic>Upwelling</topic><topic>Wind</topic><topic>Wind effects</topic><topic>Winds</topic><topic>Zonal winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bowen</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bowen</au><au>Fedorov, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effects of Background Zonal and Meridional Winds on ENSO in a Coupled GCM</atitle><jtitle>Journal of climate</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>33</volume><issue>6</issue><spage>2075</spage><epage>2091</epage><pages>2075-2091</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Changes in background zonal wind in the tropical Pacific are often invoked to explain changes in ENSO properties. However, the sensitivity of ENSO to mean zonal winds has been thoroughly explored only in intermediate coupled models (following Zebiak and Cane), not in coupled GCMs. The role of mean meridional winds has received even less attention. Accordingly, the goal of this study is to examine systematically the effects of both zonal (equatorial) and meridional (cross-equatorial) background winds on ENSO using targeted experiments with a comprehensive climate model (CESM). Changes in the mean winds are generated by imposing heat flux forcing in two confined regions at a sufficient distance north and south of the equator. We find that the strengthening of either wind component reduces ENSO amplitude, especially eastern Pacific SST variability, and inhibits meridional swings of the intertropical convergence zone (ITCZ). The effect of zonal winds is generally stronger than that of meridional winds. A stability analysis reveals that the strengthening of zonal and meridional winds weakens the ENSO key positive feedbacks, specifically the zonal advection and thermocline feedbacks, which explains these changes. Zonal wind enhancement also intensifies mean upwelling and hence dynamical damping, leading to a further weakening of El Niño events. Ultimately, this study argues that the zonal and, to a lesser extent, meridional wind strengthening of the past decades may have contributed to the observed shift of El Niño characteristics after the year 2000.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-18-0822.1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5428-1117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2020-03, Vol.33 (6), p.2075-2091
issn 0894-8755
1520-0442
language eng
recordid cdi_hal_primary_oai_HAL_hal_02904230v1
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing
subjects 20th century
Advection
Climate
Climate change
Climate models
Convergence zones
Damping
Earth Sciences
El Nino
El Nino events
El Nino phenomena
El Nino-Southern Oscillation event
Equator
Experiments
Geophysics
Heat flux
Heat transfer
Intertropical convergence zone
Mean winds
Meridional wind
Ocean circulation
Physics
Precipitation
Sciences of the Universe
Sea surface
Southern Oscillation
Stability
Stability analysis
Studies
Surface temperature
Thermocline
Trends
Tropical climate
Upwelling
Wind
Wind effects
Winds
Zonal winds
title The Effects of Background Zonal and Meridional Winds on ENSO in a Coupled GCM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effects%20of%20Background%20Zonal%20and%20Meridional%20Winds%20on%20ENSO%20in%20a%20Coupled%20GCM&rft.jtitle=Journal%20of%20climate&rft.au=Zhao,%20Bowen&rft.date=2020-03-15&rft.volume=33&rft.issue=6&rft.spage=2075&rft.epage=2091&rft.pages=2075-2091&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-18-0822.1&rft_dat=%3Cjstor_hal_p%3E26916849%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392644807&rft_id=info:pmid/&rft_jstor_id=26916849&rfr_iscdi=true