Improved Statistical Method for Quality Control of Hydrographic Observations

Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide clim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2020-05, Vol.37 (5), p.789-806
Hauptverfasser: Gourrion, Jérôme, Szekely, Tanguy, Killick, Rachel, Owens, Breck, Reverdin, Gilles, Chapron, Bertrand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 5
container_start_page 789
container_title Journal of atmospheric and oceanic technology
container_volume 37
creator Gourrion, Jérôme
Szekely, Tanguy
Killick, Rachel
Owens, Breck
Reverdin, Gilles
Chapron, Bertrand
description Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.
doi_str_mv 10.1175/JTECH-D-18-0244.1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02904093v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407757614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-4fad47fd4d558149e4c718753edbcbc9691db0a0ec917d5956c6d9fb56a215513</originalsourceid><addsrcrecordid>eNo9kNFOwjAUhhujiYg-gHdLvPJieM7WruslARTMDDHiddO1nYwMiu0g4e3dxHh1kpPv_PnPR8g9wgiRs6fX1Wwyj6cx5jEklI7wggyQJRADTbJLMgCeihgYT67JTQgbAMAUswEpFtu9d0droo9WtXVoa62a6M22a2eiyvno_aCauj1FE7drvWsiV0Xzk_Huy6v9utbRsgzWH7tTtwu35KpSTbB3f3NIPp9nq65XsXxZTMZFrFMGbUwrZSivDDWM5UiFpZpjzllqTalLLTKBpgQFVgvkhgmW6cyIqmSZSpAxTIfk8Zy7Vo3c-3qr_Ek6Vcv5uJD9DhIBFER67NmHM9u9-X2woZUbd_C7rp5MKHDOeIa0o_BMae9C8Lb6j0WQvWD5K1hOJeayFywx_QH-TG4F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407757614</pqid></control><display><type>article</type><title>Improved Statistical Method for Quality Control of Hydrographic Observations</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gourrion, Jérôme ; Szekely, Tanguy ; Killick, Rachel ; Owens, Breck ; Reverdin, Gilles ; Chapron, Bertrand</creator><creatorcontrib>Gourrion, Jérôme ; Szekely, Tanguy ; Killick, Rachel ; Owens, Breck ; Reverdin, Gilles ; Chapron, Bertrand</creatorcontrib><description>Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-18-0244.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Bias ; Data assimilation ; Data errors ; Datasets ; Distribution ; False alarms ; Geophysics ; Maxima ; Noise ; Oceanic analysis ; Oceans ; Parameter estimation ; Physics ; Probability distribution ; Procedures ; Quality control ; Robustness ; Salinity ; Statistical methods ; Statistics ; Validity ; Variability ; Variance</subject><ispartof>Journal of atmospheric and oceanic technology, 2020-05, Vol.37 (5), p.789-806</ispartof><rights>Copyright American Meteorological Society May 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-4fad47fd4d558149e4c718753edbcbc9691db0a0ec917d5956c6d9fb56a215513</citedby><cites>FETCH-LOGICAL-c350t-4fad47fd4d558149e4c718753edbcbc9691db0a0ec917d5956c6d9fb56a215513</cites><orcidid>0000-0001-6088-8775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02904093$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gourrion, Jérôme</creatorcontrib><creatorcontrib>Szekely, Tanguy</creatorcontrib><creatorcontrib>Killick, Rachel</creatorcontrib><creatorcontrib>Owens, Breck</creatorcontrib><creatorcontrib>Reverdin, Gilles</creatorcontrib><creatorcontrib>Chapron, Bertrand</creatorcontrib><title>Improved Statistical Method for Quality Control of Hydrographic Observations</title><title>Journal of atmospheric and oceanic technology</title><description>Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.</description><subject>Bias</subject><subject>Data assimilation</subject><subject>Data errors</subject><subject>Datasets</subject><subject>Distribution</subject><subject>False alarms</subject><subject>Geophysics</subject><subject>Maxima</subject><subject>Noise</subject><subject>Oceanic analysis</subject><subject>Oceans</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Probability distribution</subject><subject>Procedures</subject><subject>Quality control</subject><subject>Robustness</subject><subject>Salinity</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Validity</subject><subject>Variability</subject><subject>Variance</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kNFOwjAUhhujiYg-gHdLvPJieM7WruslARTMDDHiddO1nYwMiu0g4e3dxHh1kpPv_PnPR8g9wgiRs6fX1Wwyj6cx5jEklI7wggyQJRADTbJLMgCeihgYT67JTQgbAMAUswEpFtu9d0droo9WtXVoa62a6M22a2eiyvno_aCauj1FE7drvWsiV0Xzk_Huy6v9utbRsgzWH7tTtwu35KpSTbB3f3NIPp9nq65XsXxZTMZFrFMGbUwrZSivDDWM5UiFpZpjzllqTalLLTKBpgQFVgvkhgmW6cyIqmSZSpAxTIfk8Zy7Vo3c-3qr_Ek6Vcv5uJD9DhIBFER67NmHM9u9-X2woZUbd_C7rp5MKHDOeIa0o_BMae9C8Lb6j0WQvWD5K1hOJeayFywx_QH-TG4F</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Gourrion, Jérôme</creator><creator>Szekely, Tanguy</creator><creator>Killick, Rachel</creator><creator>Owens, Breck</creator><creator>Reverdin, Gilles</creator><creator>Chapron, Bertrand</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid></search><sort><creationdate>202005</creationdate><title>Improved Statistical Method for Quality Control of Hydrographic Observations</title><author>Gourrion, Jérôme ; Szekely, Tanguy ; Killick, Rachel ; Owens, Breck ; Reverdin, Gilles ; Chapron, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-4fad47fd4d558149e4c718753edbcbc9691db0a0ec917d5956c6d9fb56a215513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Data assimilation</topic><topic>Data errors</topic><topic>Datasets</topic><topic>Distribution</topic><topic>False alarms</topic><topic>Geophysics</topic><topic>Maxima</topic><topic>Noise</topic><topic>Oceanic analysis</topic><topic>Oceans</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Probability distribution</topic><topic>Procedures</topic><topic>Quality control</topic><topic>Robustness</topic><topic>Salinity</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Validity</topic><topic>Variability</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gourrion, Jérôme</creatorcontrib><creatorcontrib>Szekely, Tanguy</creatorcontrib><creatorcontrib>Killick, Rachel</creatorcontrib><creatorcontrib>Owens, Breck</creatorcontrib><creatorcontrib>Reverdin, Gilles</creatorcontrib><creatorcontrib>Chapron, Bertrand</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gourrion, Jérôme</au><au>Szekely, Tanguy</au><au>Killick, Rachel</au><au>Owens, Breck</au><au>Reverdin, Gilles</au><au>Chapron, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Statistical Method for Quality Control of Hydrographic Observations</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2020-05</date><risdate>2020</risdate><volume>37</volume><issue>5</issue><spage>789</spage><epage>806</epage><pages>789-806</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-18-0244.1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2020-05, Vol.37 (5), p.789-806
issn 0739-0572
1520-0426
language eng
recordid cdi_hal_primary_oai_HAL_hal_02904093v1
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Bias
Data assimilation
Data errors
Datasets
Distribution
False alarms
Geophysics
Maxima
Noise
Oceanic analysis
Oceans
Parameter estimation
Physics
Probability distribution
Procedures
Quality control
Robustness
Salinity
Statistical methods
Statistics
Validity
Variability
Variance
title Improved Statistical Method for Quality Control of Hydrographic Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Statistical%20Method%20for%20Quality%20Control%20of%20Hydrographic%20Observations&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Gourrion,%20J%C3%A9r%C3%B4me&rft.date=2020-05&rft.volume=37&rft.issue=5&rft.spage=789&rft.epage=806&rft.pages=789-806&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-18-0244.1&rft_dat=%3Cproquest_hal_p%3E2407757614%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407757614&rft_id=info:pmid/&rfr_iscdi=true