Improved Statistical Method for Quality Control of Hydrographic Observations
Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide clim...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2020-05, Vol.37 (5), p.789-806 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 806 |
---|---|
container_issue | 5 |
container_start_page | 789 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 37 |
creator | Gourrion, Jérôme Szekely, Tanguy Killick, Rachel Owens, Breck Reverdin, Gilles Chapron, Bertrand |
description | Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability. |
doi_str_mv | 10.1175/JTECH-D-18-0244.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02904093v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407757614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-4fad47fd4d558149e4c718753edbcbc9691db0a0ec917d5956c6d9fb56a215513</originalsourceid><addsrcrecordid>eNo9kNFOwjAUhhujiYg-gHdLvPJieM7WruslARTMDDHiddO1nYwMiu0g4e3dxHh1kpPv_PnPR8g9wgiRs6fX1Wwyj6cx5jEklI7wggyQJRADTbJLMgCeihgYT67JTQgbAMAUswEpFtu9d0droo9WtXVoa62a6M22a2eiyvno_aCauj1FE7drvWsiV0Xzk_Huy6v9utbRsgzWH7tTtwu35KpSTbB3f3NIPp9nq65XsXxZTMZFrFMGbUwrZSivDDWM5UiFpZpjzllqTalLLTKBpgQFVgvkhgmW6cyIqmSZSpAxTIfk8Zy7Vo3c-3qr_Ek6Vcv5uJD9DhIBFER67NmHM9u9-X2woZUbd_C7rp5MKHDOeIa0o_BMae9C8Lb6j0WQvWD5K1hOJeayFywx_QH-TG4F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407757614</pqid></control><display><type>article</type><title>Improved Statistical Method for Quality Control of Hydrographic Observations</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gourrion, Jérôme ; Szekely, Tanguy ; Killick, Rachel ; Owens, Breck ; Reverdin, Gilles ; Chapron, Bertrand</creator><creatorcontrib>Gourrion, Jérôme ; Szekely, Tanguy ; Killick, Rachel ; Owens, Breck ; Reverdin, Gilles ; Chapron, Bertrand</creatorcontrib><description>Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-18-0244.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Bias ; Data assimilation ; Data errors ; Datasets ; Distribution ; False alarms ; Geophysics ; Maxima ; Noise ; Oceanic analysis ; Oceans ; Parameter estimation ; Physics ; Probability distribution ; Procedures ; Quality control ; Robustness ; Salinity ; Statistical methods ; Statistics ; Validity ; Variability ; Variance</subject><ispartof>Journal of atmospheric and oceanic technology, 2020-05, Vol.37 (5), p.789-806</ispartof><rights>Copyright American Meteorological Society May 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-4fad47fd4d558149e4c718753edbcbc9691db0a0ec917d5956c6d9fb56a215513</citedby><cites>FETCH-LOGICAL-c350t-4fad47fd4d558149e4c718753edbcbc9691db0a0ec917d5956c6d9fb56a215513</cites><orcidid>0000-0001-6088-8775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02904093$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gourrion, Jérôme</creatorcontrib><creatorcontrib>Szekely, Tanguy</creatorcontrib><creatorcontrib>Killick, Rachel</creatorcontrib><creatorcontrib>Owens, Breck</creatorcontrib><creatorcontrib>Reverdin, Gilles</creatorcontrib><creatorcontrib>Chapron, Bertrand</creatorcontrib><title>Improved Statistical Method for Quality Control of Hydrographic Observations</title><title>Journal of atmospheric and oceanic technology</title><description>Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.</description><subject>Bias</subject><subject>Data assimilation</subject><subject>Data errors</subject><subject>Datasets</subject><subject>Distribution</subject><subject>False alarms</subject><subject>Geophysics</subject><subject>Maxima</subject><subject>Noise</subject><subject>Oceanic analysis</subject><subject>Oceans</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Probability distribution</subject><subject>Procedures</subject><subject>Quality control</subject><subject>Robustness</subject><subject>Salinity</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Validity</subject><subject>Variability</subject><subject>Variance</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kNFOwjAUhhujiYg-gHdLvPJieM7WruslARTMDDHiddO1nYwMiu0g4e3dxHh1kpPv_PnPR8g9wgiRs6fX1Wwyj6cx5jEklI7wggyQJRADTbJLMgCeihgYT67JTQgbAMAUswEpFtu9d0droo9WtXVoa62a6M22a2eiyvno_aCauj1FE7drvWsiV0Xzk_Huy6v9utbRsgzWH7tTtwu35KpSTbB3f3NIPp9nq65XsXxZTMZFrFMGbUwrZSivDDWM5UiFpZpjzllqTalLLTKBpgQFVgvkhgmW6cyIqmSZSpAxTIfk8Zy7Vo3c-3qr_Ek6Vcv5uJD9DhIBFER67NmHM9u9-X2woZUbd_C7rp5MKHDOeIa0o_BMae9C8Lb6j0WQvWD5K1hOJeayFywx_QH-TG4F</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Gourrion, Jérôme</creator><creator>Szekely, Tanguy</creator><creator>Killick, Rachel</creator><creator>Owens, Breck</creator><creator>Reverdin, Gilles</creator><creator>Chapron, Bertrand</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid></search><sort><creationdate>202005</creationdate><title>Improved Statistical Method for Quality Control of Hydrographic Observations</title><author>Gourrion, Jérôme ; Szekely, Tanguy ; Killick, Rachel ; Owens, Breck ; Reverdin, Gilles ; Chapron, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-4fad47fd4d558149e4c718753edbcbc9691db0a0ec917d5956c6d9fb56a215513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Data assimilation</topic><topic>Data errors</topic><topic>Datasets</topic><topic>Distribution</topic><topic>False alarms</topic><topic>Geophysics</topic><topic>Maxima</topic><topic>Noise</topic><topic>Oceanic analysis</topic><topic>Oceans</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Probability distribution</topic><topic>Procedures</topic><topic>Quality control</topic><topic>Robustness</topic><topic>Salinity</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Validity</topic><topic>Variability</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gourrion, Jérôme</creatorcontrib><creatorcontrib>Szekely, Tanguy</creatorcontrib><creatorcontrib>Killick, Rachel</creatorcontrib><creatorcontrib>Owens, Breck</creatorcontrib><creatorcontrib>Reverdin, Gilles</creatorcontrib><creatorcontrib>Chapron, Bertrand</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gourrion, Jérôme</au><au>Szekely, Tanguy</au><au>Killick, Rachel</au><au>Owens, Breck</au><au>Reverdin, Gilles</au><au>Chapron, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Statistical Method for Quality Control of Hydrographic Observations</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2020-05</date><risdate>2020</risdate><volume>37</volume><issue>5</issue><spage>789</spage><epage>806</epage><pages>789-806</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-18-0244.1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2020-05, Vol.37 (5), p.789-806 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02904093v1 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Bias Data assimilation Data errors Datasets Distribution False alarms Geophysics Maxima Noise Oceanic analysis Oceans Parameter estimation Physics Probability distribution Procedures Quality control Robustness Salinity Statistical methods Statistics Validity Variability Variance |
title | Improved Statistical Method for Quality Control of Hydrographic Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Statistical%20Method%20for%20Quality%20Control%20of%20Hydrographic%20Observations&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Gourrion,%20J%C3%A9r%C3%B4me&rft.date=2020-05&rft.volume=37&rft.issue=5&rft.spage=789&rft.epage=806&rft.pages=789-806&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-18-0244.1&rft_dat=%3Cproquest_hal_p%3E2407757614%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407757614&rft_id=info:pmid/&rfr_iscdi=true |