Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY

Context. Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres. Aims. We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-04, Vol.636, p.A108
Hauptverfasser: Bouvier, J., Perraut, K., Le Bouquin, J.-B., Duvert, G., Dougados, C., Brandner, W., Benisty, M., Berger, J.-P., Alécian, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A108
container_title Astronomy and astrophysics (Berlin)
container_volume 636
creator Bouvier, J.
Perraut, K.
Le Bouquin, J.-B.
Duvert, G.
Dougados, C.
Brandner, W.
Benisty, M.
Berger, J.-P.
Alécian, E.
description Context. Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres. Aims. We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferometry. Methods. We observed the pre-transitional disk system DoAr 44 with VLTI/GRAVITY on two consecutive nights in the K -band. We computed interferometric visibilities and phases in the continuum and in the Br γ line in order to constrain the extent and geometry of the emitting regions. Results. We resolve the continuum emission of the inner dusty disk and measure a half-flux radius of 0.14 au. We derive the inclination and position angle of the inner disk, which provides direct evidence that the inner and outer disks are misaligned in this pre-transitional system. This may account for the shadows previously detected in the outer disk. We show that Br γ emission arises from an even more compact region than the inner disk, with an upper limit of 0.047 au (~5 R ⋆ ). Differential phase measurements between the Br γ line and the continuum allow us to measure the astrometric displacement of the Br γ line-emitting region relative to the continuum on a scale of a few tens of microarcsec, corresponding to a fraction of the stellar radius. Conclusions. Our results can be accounted for by a simple geometric model where the Br γ line emission arises from a compact region interior to the inner disk edge, on a scale of a few stellar radii, fully consistent with the concept of magnetospheric accretion process in low-mass young stellar systems.
doi_str_mv 10.1051/0004-6361/202037611
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02903823v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487116933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bd0b8936035d00f13102f3ae118a7470017fdc8b8b3a12cc2bf4bb723817bb503</originalsourceid><addsrcrecordid>eNo9kU9Lw0AQxRdRsFY_gZcFTx5iZ3a2SXos_mkLAUVqwdOym2za1LYbd1Oh397ESk-PGX7zYN5j7BbhAWGIAwCQUUwxDgQIoCRGPGM9lCQiSGR8znon4pJdhbBuR4Ep9Vj95p2pdkverCzf6uXONi7UK-urnOs897ap3I57u-zElX_Ywe3bg9rbqPF6F6oO0RteVOGLh0No7JY_ubHnUvJ96LwX2Xw2mLyPF7P55zW7KPUm2Jt_7bOPl-f54zTKXiezx3EW5TSMm8gUYNIRxUDDAqBEQhAlaYuY6kQmAJiURZ6a1JBGkefClNKYRFCKiTFDoD67P_qu9EbVvtpqf1BOV2o6zlS3AzECSgX9YMveHdnau--9DY1au71vfwpKyDRBjEdELUVHKvcuBG_Lky2C6mpQXciqC1mdaqBf8cp4jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487116933</pqid></control><display><type>article</type><title>Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY</title><source>EDP Sciences</source><source>EZB Electronic Journals Library</source><source>EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX</source><creator>Bouvier, J. ; Perraut, K. ; Le Bouquin, J.-B. ; Duvert, G. ; Dougados, C. ; Brandner, W. ; Benisty, M. ; Berger, J.-P. ; Alécian, E.</creator><creatorcontrib>Bouvier, J. ; Perraut, K. ; Le Bouquin, J.-B. ; Duvert, G. ; Dougados, C. ; Brandner, W. ; Benisty, M. ; Berger, J.-P. ; Alécian, E.</creatorcontrib><description>Context. Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres. Aims. We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferometry. Methods. We observed the pre-transitional disk system DoAr 44 with VLTI/GRAVITY on two consecutive nights in the K -band. We computed interferometric visibilities and phases in the continuum and in the Br γ line in order to constrain the extent and geometry of the emitting regions. Results. We resolve the continuum emission of the inner dusty disk and measure a half-flux radius of 0.14 au. We derive the inclination and position angle of the inner disk, which provides direct evidence that the inner and outer disks are misaligned in this pre-transitional system. This may account for the shadows previously detected in the outer disk. We show that Br γ emission arises from an even more compact region than the inner disk, with an upper limit of 0.047 au (~5 R ⋆ ). Differential phase measurements between the Br γ line and the continuum allow us to measure the astrometric displacement of the Br γ line-emitting region relative to the continuum on a scale of a few tens of microarcsec, corresponding to a fraction of the stellar radius. Conclusions. Our results can be accounted for by a simple geometric model where the Br γ line emission arises from a compact region interior to the inner disk edge, on a scale of a few stellar radii, fully consistent with the concept of magnetospheric accretion process in low-mass young stellar systems.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202037611</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Accretion disks ; Astrophysics ; Continuum radiation ; Deposition ; Emission ; Gravitation ; Interferometry ; Physics ; Stellar magnetospheres ; Stellar systems</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-04, Vol.636, p.A108</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bd0b8936035d00f13102f3ae118a7470017fdc8b8b3a12cc2bf4bb723817bb503</citedby><cites>FETCH-LOGICAL-c356t-bd0b8936035d00f13102f3ae118a7470017fdc8b8b3a12cc2bf4bb723817bb503</cites><orcidid>0000-0003-1939-6351 ; 0000-0001-5260-7179 ; 0000-0001-6660-936X ; 0000-0002-7695-7605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02903823$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouvier, J.</creatorcontrib><creatorcontrib>Perraut, K.</creatorcontrib><creatorcontrib>Le Bouquin, J.-B.</creatorcontrib><creatorcontrib>Duvert, G.</creatorcontrib><creatorcontrib>Dougados, C.</creatorcontrib><creatorcontrib>Brandner, W.</creatorcontrib><creatorcontrib>Benisty, M.</creatorcontrib><creatorcontrib>Berger, J.-P.</creatorcontrib><creatorcontrib>Alécian, E.</creatorcontrib><title>Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres. Aims. We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferometry. Methods. We observed the pre-transitional disk system DoAr 44 with VLTI/GRAVITY on two consecutive nights in the K -band. We computed interferometric visibilities and phases in the continuum and in the Br γ line in order to constrain the extent and geometry of the emitting regions. Results. We resolve the continuum emission of the inner dusty disk and measure a half-flux radius of 0.14 au. We derive the inclination and position angle of the inner disk, which provides direct evidence that the inner and outer disks are misaligned in this pre-transitional system. This may account for the shadows previously detected in the outer disk. We show that Br γ emission arises from an even more compact region than the inner disk, with an upper limit of 0.047 au (~5 R ⋆ ). Differential phase measurements between the Br γ line and the continuum allow us to measure the astrometric displacement of the Br γ line-emitting region relative to the continuum on a scale of a few tens of microarcsec, corresponding to a fraction of the stellar radius. Conclusions. Our results can be accounted for by a simple geometric model where the Br γ line emission arises from a compact region interior to the inner disk edge, on a scale of a few stellar radii, fully consistent with the concept of magnetospheric accretion process in low-mass young stellar systems.</description><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Continuum radiation</subject><subject>Deposition</subject><subject>Emission</subject><subject>Gravitation</subject><subject>Interferometry</subject><subject>Physics</subject><subject>Stellar magnetospheres</subject><subject>Stellar systems</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kU9Lw0AQxRdRsFY_gZcFTx5iZ3a2SXos_mkLAUVqwdOym2za1LYbd1Oh397ESk-PGX7zYN5j7BbhAWGIAwCQUUwxDgQIoCRGPGM9lCQiSGR8znon4pJdhbBuR4Ep9Vj95p2pdkverCzf6uXONi7UK-urnOs897ap3I57u-zElX_Ywe3bg9rbqPF6F6oO0RteVOGLh0No7JY_ubHnUvJ96LwX2Xw2mLyPF7P55zW7KPUm2Jt_7bOPl-f54zTKXiezx3EW5TSMm8gUYNIRxUDDAqBEQhAlaYuY6kQmAJiURZ6a1JBGkefClNKYRFCKiTFDoD67P_qu9EbVvtpqf1BOV2o6zlS3AzECSgX9YMveHdnau--9DY1au71vfwpKyDRBjEdELUVHKvcuBG_Lky2C6mpQXciqC1mdaqBf8cp4jg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Bouvier, J.</creator><creator>Perraut, K.</creator><creator>Le Bouquin, J.-B.</creator><creator>Duvert, G.</creator><creator>Dougados, C.</creator><creator>Brandner, W.</creator><creator>Benisty, M.</creator><creator>Berger, J.-P.</creator><creator>Alécian, E.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1939-6351</orcidid><orcidid>https://orcid.org/0000-0001-5260-7179</orcidid><orcidid>https://orcid.org/0000-0001-6660-936X</orcidid><orcidid>https://orcid.org/0000-0002-7695-7605</orcidid></search><sort><creationdate>20200401</creationdate><title>Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY</title><author>Bouvier, J. ; Perraut, K. ; Le Bouquin, J.-B. ; Duvert, G. ; Dougados, C. ; Brandner, W. ; Benisty, M. ; Berger, J.-P. ; Alécian, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bd0b8936035d00f13102f3ae118a7470017fdc8b8b3a12cc2bf4bb723817bb503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Continuum radiation</topic><topic>Deposition</topic><topic>Emission</topic><topic>Gravitation</topic><topic>Interferometry</topic><topic>Physics</topic><topic>Stellar magnetospheres</topic><topic>Stellar systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouvier, J.</creatorcontrib><creatorcontrib>Perraut, K.</creatorcontrib><creatorcontrib>Le Bouquin, J.-B.</creatorcontrib><creatorcontrib>Duvert, G.</creatorcontrib><creatorcontrib>Dougados, C.</creatorcontrib><creatorcontrib>Brandner, W.</creatorcontrib><creatorcontrib>Benisty, M.</creatorcontrib><creatorcontrib>Berger, J.-P.</creatorcontrib><creatorcontrib>Alécian, E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouvier, J.</au><au>Perraut, K.</au><au>Le Bouquin, J.-B.</au><au>Duvert, G.</au><au>Dougados, C.</au><au>Brandner, W.</au><au>Benisty, M.</au><au>Berger, J.-P.</au><au>Alécian, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>636</volume><spage>A108</spage><pages>A108-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context. Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres. Aims. We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferometry. Methods. We observed the pre-transitional disk system DoAr 44 with VLTI/GRAVITY on two consecutive nights in the K -band. We computed interferometric visibilities and phases in the continuum and in the Br γ line in order to constrain the extent and geometry of the emitting regions. Results. We resolve the continuum emission of the inner dusty disk and measure a half-flux radius of 0.14 au. We derive the inclination and position angle of the inner disk, which provides direct evidence that the inner and outer disks are misaligned in this pre-transitional system. This may account for the shadows previously detected in the outer disk. We show that Br γ emission arises from an even more compact region than the inner disk, with an upper limit of 0.047 au (~5 R ⋆ ). Differential phase measurements between the Br γ line and the continuum allow us to measure the astrometric displacement of the Br γ line-emitting region relative to the continuum on a scale of a few tens of microarcsec, corresponding to a fraction of the stellar radius. Conclusions. Our results can be accounted for by a simple geometric model where the Br γ line emission arises from a compact region interior to the inner disk edge, on a scale of a few stellar radii, fully consistent with the concept of magnetospheric accretion process in low-mass young stellar systems.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202037611</doi><orcidid>https://orcid.org/0000-0003-1939-6351</orcidid><orcidid>https://orcid.org/0000-0001-5260-7179</orcidid><orcidid>https://orcid.org/0000-0001-6660-936X</orcidid><orcidid>https://orcid.org/0000-0002-7695-7605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-04, Vol.636, p.A108
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_02903823v1
source EDP Sciences; EZB Electronic Journals Library; EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX
subjects Accretion disks
Astrophysics
Continuum radiation
Deposition
Emission
Gravitation
Interferometry
Physics
Stellar magnetospheres
Stellar systems
title Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20magnetospheric%20accretion%20region%20of%20the%20young%20pre-transitional%20disk%20system%20DoAr%2044%20using%20VLTI/GRAVITY&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bouvier,%20J.&rft.date=2020-04-01&rft.volume=636&rft.spage=A108&rft.pages=A108-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202037611&rft_dat=%3Cproquest_hal_p%3E2487116933%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487116933&rft_id=info:pmid/&rfr_iscdi=true