Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY
Context. Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres. Aims. We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferomet...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2020-04, Vol.636, p.A108 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A108 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 636 |
creator | Bouvier, J. Perraut, K. Le Bouquin, J.-B. Duvert, G. Dougados, C. Brandner, W. Benisty, M. Berger, J.-P. Alécian, E. |
description | Context.
Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres.
Aims.
We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferometry.
Methods.
We observed the pre-transitional disk system DoAr 44 with VLTI/GRAVITY on two consecutive nights in the
K
-band. We computed interferometric visibilities and phases in the continuum and in the Br
γ
line in order to constrain the extent and geometry of the emitting regions.
Results.
We resolve the continuum emission of the inner dusty disk and measure a half-flux radius of 0.14 au. We derive the inclination and position angle of the inner disk, which provides direct evidence that the inner and outer disks are misaligned in this pre-transitional system. This may account for the shadows previously detected in the outer disk. We show that Br
γ
emission arises from an even more compact region than the inner disk, with an upper limit of 0.047 au (~5
R
⋆
). Differential phase measurements between the Br
γ
line and the continuum allow us to measure the astrometric displacement of the Br
γ
line-emitting region relative to the continuum on a scale of a few tens of microarcsec, corresponding to a fraction of the stellar radius.
Conclusions.
Our results can be accounted for by a simple geometric model where the Br
γ
line emission arises from a compact region interior to the inner disk edge, on a scale of a few stellar radii, fully consistent with the concept of magnetospheric accretion process in low-mass young stellar systems. |
doi_str_mv | 10.1051/0004-6361/202037611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02903823v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487116933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bd0b8936035d00f13102f3ae118a7470017fdc8b8b3a12cc2bf4bb723817bb503</originalsourceid><addsrcrecordid>eNo9kU9Lw0AQxRdRsFY_gZcFTx5iZ3a2SXos_mkLAUVqwdOym2za1LYbd1Oh397ESk-PGX7zYN5j7BbhAWGIAwCQUUwxDgQIoCRGPGM9lCQiSGR8znon4pJdhbBuR4Ep9Vj95p2pdkverCzf6uXONi7UK-urnOs897ap3I57u-zElX_Ywe3bg9rbqPF6F6oO0RteVOGLh0No7JY_ubHnUvJ96LwX2Xw2mLyPF7P55zW7KPUm2Jt_7bOPl-f54zTKXiezx3EW5TSMm8gUYNIRxUDDAqBEQhAlaYuY6kQmAJiURZ6a1JBGkefClNKYRFCKiTFDoD67P_qu9EbVvtpqf1BOV2o6zlS3AzECSgX9YMveHdnau--9DY1au71vfwpKyDRBjEdELUVHKvcuBG_Lky2C6mpQXciqC1mdaqBf8cp4jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487116933</pqid></control><display><type>article</type><title>Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY</title><source>EDP Sciences</source><source>EZB Electronic Journals Library</source><source>EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX</source><creator>Bouvier, J. ; Perraut, K. ; Le Bouquin, J.-B. ; Duvert, G. ; Dougados, C. ; Brandner, W. ; Benisty, M. ; Berger, J.-P. ; Alécian, E.</creator><creatorcontrib>Bouvier, J. ; Perraut, K. ; Le Bouquin, J.-B. ; Duvert, G. ; Dougados, C. ; Brandner, W. ; Benisty, M. ; Berger, J.-P. ; Alécian, E.</creatorcontrib><description>Context.
Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres.
Aims.
We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferometry.
Methods.
We observed the pre-transitional disk system DoAr 44 with VLTI/GRAVITY on two consecutive nights in the
K
-band. We computed interferometric visibilities and phases in the continuum and in the Br
γ
line in order to constrain the extent and geometry of the emitting regions.
Results.
We resolve the continuum emission of the inner dusty disk and measure a half-flux radius of 0.14 au. We derive the inclination and position angle of the inner disk, which provides direct evidence that the inner and outer disks are misaligned in this pre-transitional system. This may account for the shadows previously detected in the outer disk. We show that Br
γ
emission arises from an even more compact region than the inner disk, with an upper limit of 0.047 au (~5
R
⋆
). Differential phase measurements between the Br
γ
line and the continuum allow us to measure the astrometric displacement of the Br
γ
line-emitting region relative to the continuum on a scale of a few tens of microarcsec, corresponding to a fraction of the stellar radius.
Conclusions.
Our results can be accounted for by a simple geometric model where the Br
γ
line emission arises from a compact region interior to the inner disk edge, on a scale of a few stellar radii, fully consistent with the concept of magnetospheric accretion process in low-mass young stellar systems.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202037611</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Accretion disks ; Astrophysics ; Continuum radiation ; Deposition ; Emission ; Gravitation ; Interferometry ; Physics ; Stellar magnetospheres ; Stellar systems</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-04, Vol.636, p.A108</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bd0b8936035d00f13102f3ae118a7470017fdc8b8b3a12cc2bf4bb723817bb503</citedby><cites>FETCH-LOGICAL-c356t-bd0b8936035d00f13102f3ae118a7470017fdc8b8b3a12cc2bf4bb723817bb503</cites><orcidid>0000-0003-1939-6351 ; 0000-0001-5260-7179 ; 0000-0001-6660-936X ; 0000-0002-7695-7605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02903823$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouvier, J.</creatorcontrib><creatorcontrib>Perraut, K.</creatorcontrib><creatorcontrib>Le Bouquin, J.-B.</creatorcontrib><creatorcontrib>Duvert, G.</creatorcontrib><creatorcontrib>Dougados, C.</creatorcontrib><creatorcontrib>Brandner, W.</creatorcontrib><creatorcontrib>Benisty, M.</creatorcontrib><creatorcontrib>Berger, J.-P.</creatorcontrib><creatorcontrib>Alécian, E.</creatorcontrib><title>Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY</title><title>Astronomy and astrophysics (Berlin)</title><description>Context.
Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres.
Aims.
We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferometry.
Methods.
We observed the pre-transitional disk system DoAr 44 with VLTI/GRAVITY on two consecutive nights in the
K
-band. We computed interferometric visibilities and phases in the continuum and in the Br
γ
line in order to constrain the extent and geometry of the emitting regions.
Results.
We resolve the continuum emission of the inner dusty disk and measure a half-flux radius of 0.14 au. We derive the inclination and position angle of the inner disk, which provides direct evidence that the inner and outer disks are misaligned in this pre-transitional system. This may account for the shadows previously detected in the outer disk. We show that Br
γ
emission arises from an even more compact region than the inner disk, with an upper limit of 0.047 au (~5
R
⋆
). Differential phase measurements between the Br
γ
line and the continuum allow us to measure the astrometric displacement of the Br
γ
line-emitting region relative to the continuum on a scale of a few tens of microarcsec, corresponding to a fraction of the stellar radius.
Conclusions.
Our results can be accounted for by a simple geometric model where the Br
γ
line emission arises from a compact region interior to the inner disk edge, on a scale of a few stellar radii, fully consistent with the concept of magnetospheric accretion process in low-mass young stellar systems.</description><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Continuum radiation</subject><subject>Deposition</subject><subject>Emission</subject><subject>Gravitation</subject><subject>Interferometry</subject><subject>Physics</subject><subject>Stellar magnetospheres</subject><subject>Stellar systems</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kU9Lw0AQxRdRsFY_gZcFTx5iZ3a2SXos_mkLAUVqwdOym2za1LYbd1Oh397ESk-PGX7zYN5j7BbhAWGIAwCQUUwxDgQIoCRGPGM9lCQiSGR8znon4pJdhbBuR4Ep9Vj95p2pdkverCzf6uXONi7UK-urnOs897ap3I57u-zElX_Ywe3bg9rbqPF6F6oO0RteVOGLh0No7JY_ubHnUvJ96LwX2Xw2mLyPF7P55zW7KPUm2Jt_7bOPl-f54zTKXiezx3EW5TSMm8gUYNIRxUDDAqBEQhAlaYuY6kQmAJiURZ6a1JBGkefClNKYRFCKiTFDoD67P_qu9EbVvtpqf1BOV2o6zlS3AzECSgX9YMveHdnau--9DY1au71vfwpKyDRBjEdELUVHKvcuBG_Lky2C6mpQXciqC1mdaqBf8cp4jg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Bouvier, J.</creator><creator>Perraut, K.</creator><creator>Le Bouquin, J.-B.</creator><creator>Duvert, G.</creator><creator>Dougados, C.</creator><creator>Brandner, W.</creator><creator>Benisty, M.</creator><creator>Berger, J.-P.</creator><creator>Alécian, E.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1939-6351</orcidid><orcidid>https://orcid.org/0000-0001-5260-7179</orcidid><orcidid>https://orcid.org/0000-0001-6660-936X</orcidid><orcidid>https://orcid.org/0000-0002-7695-7605</orcidid></search><sort><creationdate>20200401</creationdate><title>Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY</title><author>Bouvier, J. ; Perraut, K. ; Le Bouquin, J.-B. ; Duvert, G. ; Dougados, C. ; Brandner, W. ; Benisty, M. ; Berger, J.-P. ; Alécian, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bd0b8936035d00f13102f3ae118a7470017fdc8b8b3a12cc2bf4bb723817bb503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Continuum radiation</topic><topic>Deposition</topic><topic>Emission</topic><topic>Gravitation</topic><topic>Interferometry</topic><topic>Physics</topic><topic>Stellar magnetospheres</topic><topic>Stellar systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouvier, J.</creatorcontrib><creatorcontrib>Perraut, K.</creatorcontrib><creatorcontrib>Le Bouquin, J.-B.</creatorcontrib><creatorcontrib>Duvert, G.</creatorcontrib><creatorcontrib>Dougados, C.</creatorcontrib><creatorcontrib>Brandner, W.</creatorcontrib><creatorcontrib>Benisty, M.</creatorcontrib><creatorcontrib>Berger, J.-P.</creatorcontrib><creatorcontrib>Alécian, E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouvier, J.</au><au>Perraut, K.</au><au>Le Bouquin, J.-B.</au><au>Duvert, G.</au><au>Dougados, C.</au><au>Brandner, W.</au><au>Benisty, M.</au><au>Berger, J.-P.</au><au>Alécian, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>636</volume><spage>A108</spage><pages>A108-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context.
Young stellar objects are thought to accrete material from their circumstellar disks through their strong stellar magnetospheres.
Aims.
We aim to directly probe the magnetospheric accretion region on a scale of a few 0.01 au in a young stellar system using long-baseline optical interferometry.
Methods.
We observed the pre-transitional disk system DoAr 44 with VLTI/GRAVITY on two consecutive nights in the
K
-band. We computed interferometric visibilities and phases in the continuum and in the Br
γ
line in order to constrain the extent and geometry of the emitting regions.
Results.
We resolve the continuum emission of the inner dusty disk and measure a half-flux radius of 0.14 au. We derive the inclination and position angle of the inner disk, which provides direct evidence that the inner and outer disks are misaligned in this pre-transitional system. This may account for the shadows previously detected in the outer disk. We show that Br
γ
emission arises from an even more compact region than the inner disk, with an upper limit of 0.047 au (~5
R
⋆
). Differential phase measurements between the Br
γ
line and the continuum allow us to measure the astrometric displacement of the Br
γ
line-emitting region relative to the continuum on a scale of a few tens of microarcsec, corresponding to a fraction of the stellar radius.
Conclusions.
Our results can be accounted for by a simple geometric model where the Br
γ
line emission arises from a compact region interior to the inner disk edge, on a scale of a few stellar radii, fully consistent with the concept of magnetospheric accretion process in low-mass young stellar systems.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202037611</doi><orcidid>https://orcid.org/0000-0003-1939-6351</orcidid><orcidid>https://orcid.org/0000-0001-5260-7179</orcidid><orcidid>https://orcid.org/0000-0001-6660-936X</orcidid><orcidid>https://orcid.org/0000-0002-7695-7605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2020-04, Vol.636, p.A108 |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02903823v1 |
source | EDP Sciences; EZB Electronic Journals Library; EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX |
subjects | Accretion disks Astrophysics Continuum radiation Deposition Emission Gravitation Interferometry Physics Stellar magnetospheres Stellar systems |
title | Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20magnetospheric%20accretion%20region%20of%20the%20young%20pre-transitional%20disk%20system%20DoAr%2044%20using%20VLTI/GRAVITY&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bouvier,%20J.&rft.date=2020-04-01&rft.volume=636&rft.spage=A108&rft.pages=A108-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202037611&rft_dat=%3Cproquest_hal_p%3E2487116933%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487116933&rft_id=info:pmid/&rfr_iscdi=true |