Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling
Modeling studies on the atmospheric diffusion and deposition of the radiocesium associated with the Fukushima Dai-ichi Nuclear Power Plant accident is reviewed here, with a focus on a research collaboration between l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN)—the French institute in...
Gespeichert in:
Veröffentlicht in: | GEOCHEMICAL JOURNAL 2018/03/30, Vol.52(2), pp.85-101 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 2 |
container_start_page | 85 |
container_title | GEOCHEMICAL JOURNAL |
container_volume | 52 |
creator | Kajino, Mizuo Sekiyama, Tsuyoshi Thomas Mathieu, Anne Korsakissok, Irène Périllat, Raphaël Quélo, Denis Quérel, Arnaud Saunier, Olivier Adachi, Kouji Girard, Sylvain Maki, Takashi Yumimoto, Keiya Didier, Damien Masson, Olivier Igarashi, Yasuhito |
description | Modeling studies on the atmospheric diffusion and deposition of the radiocesium associated with the Fukushima Dai-ichi Nuclear Power Plant accident is reviewed here, with a focus on a research collaboration between l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN)—the French institute in charge of evaluating the consequences of nuclear accidents and advising authorities in case of a crisis—and the Meteorological Research Institute (MRI) of the Japan Meteorological Agency—an operational weather forecasting center in Japan. While the modelers have come to know that wet deposition is one of the key processes, the size of its influence is unknown. They also know that the simulation results vary, but they do not know exactly why. Under the research collaboration, we aimed to understand the atmospheric processes, especially wet deposition, and to quantify the uncertainties of each component of our simulation using various numerical techniques, such as ensemble simulations, data assimilation, elemental process modeling, and inverse modeling. The outcomes of these collaborative research topics are presented in this paper. We also discuss the future directions of atmospheric modeling studies: data assimilation using the high temporal and spatial resolution surface concentration measurement data, and consideration of aerosol properties such as size and hygroscopicity into wet and dry deposition schemes. |
doi_str_mv | 10.2343/geochemj.2.0503 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02902823v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02902823v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-80b4fa68a31eaab890f56f7d6b78bc0b655f784ebc9d88c0604c20a0dfaad1a73</originalsourceid><addsrcrecordid>eNpFkU1r3DAQhk1ooduk5151Law3Y8kfcm8hbJrAQi_N2Yyl0VobfyySHOjP6j-M3G2diwSv3mdGM2-SfM1gx0Uubo80qY6G047voABxlWwyKSEt6kp8SDYAWZlWAPxT8tn7E4DI60Jukj8H8n4aPesJ3UiaGTcNDMMw-XNHzio2TJp6Ox6ZD7O25BmaQI6FjtjD_DL7zg7IxlktBRgqZTWN4Tvbj56Gtifm7TD3GGxssmUaAzL0UbMXbcuopyES2LOzm1T8zdpxy3DUzI6v5Dyt6k3y0WDv6cu_-zp5ftj_un9MDz9_PN3fHVJV5EVIJbS5wVKiyAixlTWYojSVLttKtgrasihMJXNqVa2lVFBCrjggaIOoM6zEdfLtUrfDvjm7OKX73Uxom8e7Q7NowGvgkovXLHpvL17lJu8dmRXIoFnSaf6n0_BmSScS-wtx8gGPtPrRBRtX-e4veET-Hgu3vqsOXUOjeAOQ_aOs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling</title><source>J-STAGE Free</source><source>Freely Accessible Japanese Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kajino, Mizuo ; Sekiyama, Tsuyoshi Thomas ; Mathieu, Anne ; Korsakissok, Irène ; Périllat, Raphaël ; Quélo, Denis ; Quérel, Arnaud ; Saunier, Olivier ; Adachi, Kouji ; Girard, Sylvain ; Maki, Takashi ; Yumimoto, Keiya ; Didier, Damien ; Masson, Olivier ; Igarashi, Yasuhito</creator><creatorcontrib>Kajino, Mizuo ; Sekiyama, Tsuyoshi Thomas ; Mathieu, Anne ; Korsakissok, Irène ; Périllat, Raphaël ; Quélo, Denis ; Quérel, Arnaud ; Saunier, Olivier ; Adachi, Kouji ; Girard, Sylvain ; Maki, Takashi ; Yumimoto, Keiya ; Didier, Damien ; Masson, Olivier ; Igarashi, Yasuhito</creatorcontrib><description>Modeling studies on the atmospheric diffusion and deposition of the radiocesium associated with the Fukushima Dai-ichi Nuclear Power Plant accident is reviewed here, with a focus on a research collaboration between l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN)—the French institute in charge of evaluating the consequences of nuclear accidents and advising authorities in case of a crisis—and the Meteorological Research Institute (MRI) of the Japan Meteorological Agency—an operational weather forecasting center in Japan. While the modelers have come to know that wet deposition is one of the key processes, the size of its influence is unknown. They also know that the simulation results vary, but they do not know exactly why. Under the research collaboration, we aimed to understand the atmospheric processes, especially wet deposition, and to quantify the uncertainties of each component of our simulation using various numerical techniques, such as ensemble simulations, data assimilation, elemental process modeling, and inverse modeling. The outcomes of these collaborative research topics are presented in this paper. We also discuss the future directions of atmospheric modeling studies: data assimilation using the high temporal and spatial resolution surface concentration measurement data, and consideration of aerosol properties such as size and hygroscopicity into wet and dry deposition schemes.</description><identifier>ISSN: 0016-7002</identifier><identifier>EISSN: 1880-5973</identifier><identifier>DOI: 10.2343/geochemj.2.0503</identifier><language>eng</language><publisher>GEOCHEMICAL SOCIETY OF JAPAN</publisher><subject>aerosol properties ; Atmospheric and Oceanic Physics ; data assimilation ; ensemble simulation ; Environmental Sciences ; inverse modeling ; Physics ; wet deposition</subject><ispartof>GEOCHEMICAL JOURNAL, 2018/03/30, Vol.52(2), pp.85-101</ispartof><rights>2018 by The Geochemical Society of Japan</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-80b4fa68a31eaab890f56f7d6b78bc0b655f784ebc9d88c0604c20a0dfaad1a73</citedby><cites>FETCH-LOGICAL-c545t-80b4fa68a31eaab890f56f7d6b78bc0b655f784ebc9d88c0604c20a0dfaad1a73</cites><orcidid>0000-0001-9656-9880 ; 0000-0002-1312-9335 ; 0000-0003-3949-6202 ; 0000-0001-6209-6114 ; 0000-0001-9634-1595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,1884,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02902823$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kajino, Mizuo</creatorcontrib><creatorcontrib>Sekiyama, Tsuyoshi Thomas</creatorcontrib><creatorcontrib>Mathieu, Anne</creatorcontrib><creatorcontrib>Korsakissok, Irène</creatorcontrib><creatorcontrib>Périllat, Raphaël</creatorcontrib><creatorcontrib>Quélo, Denis</creatorcontrib><creatorcontrib>Quérel, Arnaud</creatorcontrib><creatorcontrib>Saunier, Olivier</creatorcontrib><creatorcontrib>Adachi, Kouji</creatorcontrib><creatorcontrib>Girard, Sylvain</creatorcontrib><creatorcontrib>Maki, Takashi</creatorcontrib><creatorcontrib>Yumimoto, Keiya</creatorcontrib><creatorcontrib>Didier, Damien</creatorcontrib><creatorcontrib>Masson, Olivier</creatorcontrib><creatorcontrib>Igarashi, Yasuhito</creatorcontrib><title>Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling</title><title>GEOCHEMICAL JOURNAL</title><addtitle>Geochem. J.</addtitle><description>Modeling studies on the atmospheric diffusion and deposition of the radiocesium associated with the Fukushima Dai-ichi Nuclear Power Plant accident is reviewed here, with a focus on a research collaboration between l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN)—the French institute in charge of evaluating the consequences of nuclear accidents and advising authorities in case of a crisis—and the Meteorological Research Institute (MRI) of the Japan Meteorological Agency—an operational weather forecasting center in Japan. While the modelers have come to know that wet deposition is one of the key processes, the size of its influence is unknown. They also know that the simulation results vary, but they do not know exactly why. Under the research collaboration, we aimed to understand the atmospheric processes, especially wet deposition, and to quantify the uncertainties of each component of our simulation using various numerical techniques, such as ensemble simulations, data assimilation, elemental process modeling, and inverse modeling. The outcomes of these collaborative research topics are presented in this paper. We also discuss the future directions of atmospheric modeling studies: data assimilation using the high temporal and spatial resolution surface concentration measurement data, and consideration of aerosol properties such as size and hygroscopicity into wet and dry deposition schemes.</description><subject>aerosol properties</subject><subject>Atmospheric and Oceanic Physics</subject><subject>data assimilation</subject><subject>ensemble simulation</subject><subject>Environmental Sciences</subject><subject>inverse modeling</subject><subject>Physics</subject><subject>wet deposition</subject><issn>0016-7002</issn><issn>1880-5973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkU1r3DAQhk1ooduk5151Law3Y8kfcm8hbJrAQi_N2Yyl0VobfyySHOjP6j-M3G2diwSv3mdGM2-SfM1gx0Uubo80qY6G047voABxlWwyKSEt6kp8SDYAWZlWAPxT8tn7E4DI60Jukj8H8n4aPesJ3UiaGTcNDMMw-XNHzio2TJp6Ox6ZD7O25BmaQI6FjtjD_DL7zg7IxlktBRgqZTWN4Tvbj56Gtifm7TD3GGxssmUaAzL0UbMXbcuopyES2LOzm1T8zdpxy3DUzI6v5Dyt6k3y0WDv6cu_-zp5ftj_un9MDz9_PN3fHVJV5EVIJbS5wVKiyAixlTWYojSVLttKtgrasihMJXNqVa2lVFBCrjggaIOoM6zEdfLtUrfDvjm7OKX73Uxom8e7Q7NowGvgkovXLHpvL17lJu8dmRXIoFnSaf6n0_BmSScS-wtx8gGPtPrRBRtX-e4veET-Hgu3vqsOXUOjeAOQ_aOs</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kajino, Mizuo</creator><creator>Sekiyama, Tsuyoshi Thomas</creator><creator>Mathieu, Anne</creator><creator>Korsakissok, Irène</creator><creator>Périllat, Raphaël</creator><creator>Quélo, Denis</creator><creator>Quérel, Arnaud</creator><creator>Saunier, Olivier</creator><creator>Adachi, Kouji</creator><creator>Girard, Sylvain</creator><creator>Maki, Takashi</creator><creator>Yumimoto, Keiya</creator><creator>Didier, Damien</creator><creator>Masson, Olivier</creator><creator>Igarashi, Yasuhito</creator><general>GEOCHEMICAL SOCIETY OF JAPAN</general><general>The Geochemical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9656-9880</orcidid><orcidid>https://orcid.org/0000-0002-1312-9335</orcidid><orcidid>https://orcid.org/0000-0003-3949-6202</orcidid><orcidid>https://orcid.org/0000-0001-6209-6114</orcidid><orcidid>https://orcid.org/0000-0001-9634-1595</orcidid></search><sort><creationdate>20180101</creationdate><title>Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling</title><author>Kajino, Mizuo ; Sekiyama, Tsuyoshi Thomas ; Mathieu, Anne ; Korsakissok, Irène ; Périllat, Raphaël ; Quélo, Denis ; Quérel, Arnaud ; Saunier, Olivier ; Adachi, Kouji ; Girard, Sylvain ; Maki, Takashi ; Yumimoto, Keiya ; Didier, Damien ; Masson, Olivier ; Igarashi, Yasuhito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-80b4fa68a31eaab890f56f7d6b78bc0b655f784ebc9d88c0604c20a0dfaad1a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aerosol properties</topic><topic>Atmospheric and Oceanic Physics</topic><topic>data assimilation</topic><topic>ensemble simulation</topic><topic>Environmental Sciences</topic><topic>inverse modeling</topic><topic>Physics</topic><topic>wet deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kajino, Mizuo</creatorcontrib><creatorcontrib>Sekiyama, Tsuyoshi Thomas</creatorcontrib><creatorcontrib>Mathieu, Anne</creatorcontrib><creatorcontrib>Korsakissok, Irène</creatorcontrib><creatorcontrib>Périllat, Raphaël</creatorcontrib><creatorcontrib>Quélo, Denis</creatorcontrib><creatorcontrib>Quérel, Arnaud</creatorcontrib><creatorcontrib>Saunier, Olivier</creatorcontrib><creatorcontrib>Adachi, Kouji</creatorcontrib><creatorcontrib>Girard, Sylvain</creatorcontrib><creatorcontrib>Maki, Takashi</creatorcontrib><creatorcontrib>Yumimoto, Keiya</creatorcontrib><creatorcontrib>Didier, Damien</creatorcontrib><creatorcontrib>Masson, Olivier</creatorcontrib><creatorcontrib>Igarashi, Yasuhito</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>GEOCHEMICAL JOURNAL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kajino, Mizuo</au><au>Sekiyama, Tsuyoshi Thomas</au><au>Mathieu, Anne</au><au>Korsakissok, Irène</au><au>Périllat, Raphaël</au><au>Quélo, Denis</au><au>Quérel, Arnaud</au><au>Saunier, Olivier</au><au>Adachi, Kouji</au><au>Girard, Sylvain</au><au>Maki, Takashi</au><au>Yumimoto, Keiya</au><au>Didier, Damien</au><au>Masson, Olivier</au><au>Igarashi, Yasuhito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling</atitle><jtitle>GEOCHEMICAL JOURNAL</jtitle><addtitle>Geochem. J.</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>52</volume><issue>2</issue><spage>85</spage><epage>101</epage><pages>85-101</pages><issn>0016-7002</issn><eissn>1880-5973</eissn><abstract>Modeling studies on the atmospheric diffusion and deposition of the radiocesium associated with the Fukushima Dai-ichi Nuclear Power Plant accident is reviewed here, with a focus on a research collaboration between l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN)—the French institute in charge of evaluating the consequences of nuclear accidents and advising authorities in case of a crisis—and the Meteorological Research Institute (MRI) of the Japan Meteorological Agency—an operational weather forecasting center in Japan. While the modelers have come to know that wet deposition is one of the key processes, the size of its influence is unknown. They also know that the simulation results vary, but they do not know exactly why. Under the research collaboration, we aimed to understand the atmospheric processes, especially wet deposition, and to quantify the uncertainties of each component of our simulation using various numerical techniques, such as ensemble simulations, data assimilation, elemental process modeling, and inverse modeling. The outcomes of these collaborative research topics are presented in this paper. We also discuss the future directions of atmospheric modeling studies: data assimilation using the high temporal and spatial resolution surface concentration measurement data, and consideration of aerosol properties such as size and hygroscopicity into wet and dry deposition schemes.</abstract><pub>GEOCHEMICAL SOCIETY OF JAPAN</pub><doi>10.2343/geochemj.2.0503</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9656-9880</orcidid><orcidid>https://orcid.org/0000-0002-1312-9335</orcidid><orcidid>https://orcid.org/0000-0003-3949-6202</orcidid><orcidid>https://orcid.org/0000-0001-6209-6114</orcidid><orcidid>https://orcid.org/0000-0001-9634-1595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7002 |
ispartof | GEOCHEMICAL JOURNAL, 2018/03/30, Vol.52(2), pp.85-101 |
issn | 0016-7002 1880-5973 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02902823v1 |
source | J-STAGE Free; Freely Accessible Japanese Titles; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | aerosol properties Atmospheric and Oceanic Physics data assimilation ensemble simulation Environmental Sciences inverse modeling Physics wet deposition |
title | Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lessons%20learned%20from%20atmospheric%20modeling%20studies%20after%20the%20Fukushima%20nuclear%20accident:%20Ensemble%20simulations,%20data%20assimilation,%20elemental%20process%20modeling,%20and%20inverse%20modeling&rft.jtitle=GEOCHEMICAL%20JOURNAL&rft.au=Kajino,%20Mizuo&rft.date=2018-01-01&rft.volume=52&rft.issue=2&rft.spage=85&rft.epage=101&rft.pages=85-101&rft.issn=0016-7002&rft.eissn=1880-5973&rft_id=info:doi/10.2343/geochemj.2.0503&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02902823v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |