On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations

Summary Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion possible. However, in practice, the contact is rarely perfect. This r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2020-12, Vol.121 (23), p.5256-5274
Hauptverfasser: Ammar, Amine, Ghnatios, Chady, Delplace, Frank, Barasinski, Anais, Duval, Jean‐Louis, Cueto, Elías, Chinesta, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5274
container_issue 23
container_start_page 5256
container_title International journal for numerical methods in engineering
container_volume 121
creator Ammar, Amine
Ghnatios, Chady
Delplace, Frank
Barasinski, Anais
Duval, Jean‐Louis
Cueto, Elías
Chinesta, Francisco
description Summary Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion possible. However, in practice, the contact is rarely perfect. This results in a rough interface where air could remain entrapped, thus affecting the effective thermal conductivity. Moreover, the interfacial melted polymer is squeezed flowing in the rough gap created by the fibers located on the prepreg surfaces. Because of the typical dimensions of a composite prepreg, with thickness orders of magnitude smaller than its other in‐plane dimensions, and its surface roughness having a characteristic size orders of magnitude smaller than the prepreg thickness, high‐fidelity numerical simulations for elucidating the impact of surface and interface roughness remain today, despite the impressive advances in computational availabilities, unattainable. This work aims at elucidating roughness impact on heat conduction and the effective viscosity of the interfacial polymer squeeze flow by using an advanced numerical strategy able to reach resolutions never attained until now, a sort of numerical microscope able to attain the scale of the smallest geometrical detail.
doi_str_mv 10.1002/nme.6448
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02902716v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457553078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3618-2123cf3b044c39658149971b722591a147a3756956dd7f820d14c67986e264ca3</originalsourceid><addsrcrecordid>eNp1kb1OHDEUha0oSGxIJB7BUhoohtge_4xLRAhEWgIFqS2v5w5rtGsP9sxG21FR84w8CR42oqO6R_d8Orq6B6FDSk4oIexHWMOJ5Lz5hGaUaFURRtRnNCuWroRu6D76kvM9IZQKUs_Q03XAwxIwdB24wW8AuxjacZJ-2GIb2jfb9r1NEAa88dnFPFmxw7Z4PuAUx7sl7uNqu4aEfRggddYBHrMPd_jm4ufL4_PCZmhxhhJjh6IS9AlySbSDjyF_RXudXWX49n8eoL-_zm_PLqv59cXvs9N55WpJm4pRVruuXhDOXa2laCjXWtGFYkxoailXtlZCaiHbVnUNIy3lTirdSGCSO1sfoONd7tKuTJ_82qatidaby9O5mXblTYQpKje0sN93bJ_iwwh5MPdxTKGcZxgXSoiaqKZQRzvKpZhzgu49lhIzNWJKI2ZqpKDVDv3nV7D9kDN_rs7f-FeVeI1N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457553078</pqid></control><display><type>article</type><title>On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations</title><source>Wiley Online Library All Journals</source><creator>Ammar, Amine ; Ghnatios, Chady ; Delplace, Frank ; Barasinski, Anais ; Duval, Jean‐Louis ; Cueto, Elías ; Chinesta, Francisco</creator><creatorcontrib>Ammar, Amine ; Ghnatios, Chady ; Delplace, Frank ; Barasinski, Anais ; Duval, Jean‐Louis ; Cueto, Elías ; Chinesta, Francisco</creatorcontrib><description>Summary Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion possible. However, in practice, the contact is rarely perfect. This results in a rough interface where air could remain entrapped, thus affecting the effective thermal conductivity. Moreover, the interfacial melted polymer is squeezed flowing in the rough gap created by the fibers located on the prepreg surfaces. Because of the typical dimensions of a composite prepreg, with thickness orders of magnitude smaller than its other in‐plane dimensions, and its surface roughness having a characteristic size orders of magnitude smaller than the prepreg thickness, high‐fidelity numerical simulations for elucidating the impact of surface and interface roughness remain today, despite the impressive advances in computational availabilities, unattainable. This work aims at elucidating roughness impact on heat conduction and the effective viscosity of the interfacial polymer squeeze flow by using an advanced numerical strategy able to reach resolutions never attained until now, a sort of numerical microscope able to attain the scale of the smallest geometrical detail.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6448</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Analytical chemistry ; Chemical Sciences ; Conduction heating ; Conductive heat transfer ; Contact pressure ; effective viscosity ; Interface roughness ; Material chemistry ; model order reduction ; Molecular diffusion ; or physical chemistry ; PGD ; Polymers ; Preforms ; space separated representations ; surface and interface roughness ; Surface roughness ; Theoretical and ; Thermal conductivity ; Thickness ; Viscosity</subject><ispartof>International journal for numerical methods in engineering, 2020-12, Vol.121 (23), p.5256-5274</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3618-2123cf3b044c39658149971b722591a147a3756956dd7f820d14c67986e264ca3</citedby><cites>FETCH-LOGICAL-c3618-2123cf3b044c39658149971b722591a147a3756956dd7f820d14c67986e264ca3</cites><orcidid>0000-0002-6272-3429 ; 0000-0003-1017-4381 ; 0000-0002-1541-1115 ; 0000-0001-7100-3813 ; 0000-0002-6597-8750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6448$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6448$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://univ-pau.hal.science/hal-02902716$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ammar, Amine</creatorcontrib><creatorcontrib>Ghnatios, Chady</creatorcontrib><creatorcontrib>Delplace, Frank</creatorcontrib><creatorcontrib>Barasinski, Anais</creatorcontrib><creatorcontrib>Duval, Jean‐Louis</creatorcontrib><creatorcontrib>Cueto, Elías</creatorcontrib><creatorcontrib>Chinesta, Francisco</creatorcontrib><title>On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations</title><title>International journal for numerical methods in engineering</title><description>Summary Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion possible. However, in practice, the contact is rarely perfect. This results in a rough interface where air could remain entrapped, thus affecting the effective thermal conductivity. Moreover, the interfacial melted polymer is squeezed flowing in the rough gap created by the fibers located on the prepreg surfaces. Because of the typical dimensions of a composite prepreg, with thickness orders of magnitude smaller than its other in‐plane dimensions, and its surface roughness having a characteristic size orders of magnitude smaller than the prepreg thickness, high‐fidelity numerical simulations for elucidating the impact of surface and interface roughness remain today, despite the impressive advances in computational availabilities, unattainable. This work aims at elucidating roughness impact on heat conduction and the effective viscosity of the interfacial polymer squeeze flow by using an advanced numerical strategy able to reach resolutions never attained until now, a sort of numerical microscope able to attain the scale of the smallest geometrical detail.</description><subject>Analytical chemistry</subject><subject>Chemical Sciences</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Contact pressure</subject><subject>effective viscosity</subject><subject>Interface roughness</subject><subject>Material chemistry</subject><subject>model order reduction</subject><subject>Molecular diffusion</subject><subject>or physical chemistry</subject><subject>PGD</subject><subject>Polymers</subject><subject>Preforms</subject><subject>space separated representations</subject><subject>surface and interface roughness</subject><subject>Surface roughness</subject><subject>Theoretical and</subject><subject>Thermal conductivity</subject><subject>Thickness</subject><subject>Viscosity</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kb1OHDEUha0oSGxIJB7BUhoohtge_4xLRAhEWgIFqS2v5w5rtGsP9sxG21FR84w8CR42oqO6R_d8Orq6B6FDSk4oIexHWMOJ5Lz5hGaUaFURRtRnNCuWroRu6D76kvM9IZQKUs_Q03XAwxIwdB24wW8AuxjacZJ-2GIb2jfb9r1NEAa88dnFPFmxw7Z4PuAUx7sl7uNqu4aEfRggddYBHrMPd_jm4ufL4_PCZmhxhhJjh6IS9AlySbSDjyF_RXudXWX49n8eoL-_zm_PLqv59cXvs9N55WpJm4pRVruuXhDOXa2laCjXWtGFYkxoailXtlZCaiHbVnUNIy3lTirdSGCSO1sfoONd7tKuTJ_82qatidaby9O5mXblTYQpKje0sN93bJ_iwwh5MPdxTKGcZxgXSoiaqKZQRzvKpZhzgu49lhIzNWJKI2ZqpKDVDv3nV7D9kDN_rs7f-FeVeI1N</recordid><startdate>20201215</startdate><enddate>20201215</enddate><creator>Ammar, Amine</creator><creator>Ghnatios, Chady</creator><creator>Delplace, Frank</creator><creator>Barasinski, Anais</creator><creator>Duval, Jean‐Louis</creator><creator>Cueto, Elías</creator><creator>Chinesta, Francisco</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><orcidid>https://orcid.org/0000-0003-1017-4381</orcidid><orcidid>https://orcid.org/0000-0002-1541-1115</orcidid><orcidid>https://orcid.org/0000-0001-7100-3813</orcidid><orcidid>https://orcid.org/0000-0002-6597-8750</orcidid></search><sort><creationdate>20201215</creationdate><title>On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations</title><author>Ammar, Amine ; Ghnatios, Chady ; Delplace, Frank ; Barasinski, Anais ; Duval, Jean‐Louis ; Cueto, Elías ; Chinesta, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3618-2123cf3b044c39658149971b722591a147a3756956dd7f820d14c67986e264ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Chemical Sciences</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Contact pressure</topic><topic>effective viscosity</topic><topic>Interface roughness</topic><topic>Material chemistry</topic><topic>model order reduction</topic><topic>Molecular diffusion</topic><topic>or physical chemistry</topic><topic>PGD</topic><topic>Polymers</topic><topic>Preforms</topic><topic>space separated representations</topic><topic>surface and interface roughness</topic><topic>Surface roughness</topic><topic>Theoretical and</topic><topic>Thermal conductivity</topic><topic>Thickness</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammar, Amine</creatorcontrib><creatorcontrib>Ghnatios, Chady</creatorcontrib><creatorcontrib>Delplace, Frank</creatorcontrib><creatorcontrib>Barasinski, Anais</creatorcontrib><creatorcontrib>Duval, Jean‐Louis</creatorcontrib><creatorcontrib>Cueto, Elías</creatorcontrib><creatorcontrib>Chinesta, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammar, Amine</au><au>Ghnatios, Chady</au><au>Delplace, Frank</au><au>Barasinski, Anais</au><au>Duval, Jean‐Louis</au><au>Cueto, Elías</au><au>Chinesta, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-12-15</date><risdate>2020</risdate><volume>121</volume><issue>23</issue><spage>5256</spage><epage>5274</epage><pages>5256-5274</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion possible. However, in practice, the contact is rarely perfect. This results in a rough interface where air could remain entrapped, thus affecting the effective thermal conductivity. Moreover, the interfacial melted polymer is squeezed flowing in the rough gap created by the fibers located on the prepreg surfaces. Because of the typical dimensions of a composite prepreg, with thickness orders of magnitude smaller than its other in‐plane dimensions, and its surface roughness having a characteristic size orders of magnitude smaller than the prepreg thickness, high‐fidelity numerical simulations for elucidating the impact of surface and interface roughness remain today, despite the impressive advances in computational availabilities, unattainable. This work aims at elucidating roughness impact on heat conduction and the effective viscosity of the interfacial polymer squeeze flow by using an advanced numerical strategy able to reach resolutions never attained until now, a sort of numerical microscope able to attain the scale of the smallest geometrical detail.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6448</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><orcidid>https://orcid.org/0000-0003-1017-4381</orcidid><orcidid>https://orcid.org/0000-0002-1541-1115</orcidid><orcidid>https://orcid.org/0000-0001-7100-3813</orcidid><orcidid>https://orcid.org/0000-0002-6597-8750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2020-12, Vol.121 (23), p.5256-5274
issn 0029-5981
1097-0207
language eng
recordid cdi_hal_primary_oai_HAL_hal_02902716v1
source Wiley Online Library All Journals
subjects Analytical chemistry
Chemical Sciences
Conduction heating
Conductive heat transfer
Contact pressure
effective viscosity
Interface roughness
Material chemistry
model order reduction
Molecular diffusion
or physical chemistry
PGD
Polymers
Preforms
space separated representations
surface and interface roughness
Surface roughness
Theoretical and
Thermal conductivity
Thickness
Viscosity
title On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20effective%20conductivity%20and%20the%20apparent%20viscosity%20of%20a%20thin%20rough%20polymer%20interface%20using%20PGD%E2%80%90based%20separated%20representations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ammar,%20Amine&rft.date=2020-12-15&rft.volume=121&rft.issue=23&rft.spage=5256&rft.epage=5274&rft.pages=5256-5274&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6448&rft_dat=%3Cproquest_hal_p%3E2457553078%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457553078&rft_id=info:pmid/&rfr_iscdi=true