High-quality photonic entanglement out of a stand-alone silicon chip
The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range ou...
Gespeichert in:
Veröffentlicht in: | npj quantum information 2020-03, Vol.6 (1), Article 31 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj quantum information |
container_volume | 6 |
creator | Oser, Dorian Tanzilli, Sébastien Mazeas, Florent Alonso-Ramos, Carlos Le Roux, Xavier Sauder, Grégory Hua, Xin Alibart, Oliver Vivien, Laurent Cassan, Éric Labonté, Laurent |
description | The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range out of a single chip remains a major challenge, mainly due to the limited performance of on-chip light rejection filters. We report a stand-alone, telecom-compliant device that integrates, on a single substrate, a nonlinear photon-pair generator and a passive pump-rejection filter. Using standard channel-grid fiber demultiplexers, we demonstrate the first entanglement qualification of such an integrated circuit, showing the highest raw quantum interference visibility for time-energy entangled photons over two telecom-wavelength bands. Genuinely pure, maximally entangled states can therefore be generated thanks to the high-level of noise suppression obtained with the pump filter. These results will certainly further promote the development of more advanced and scalable photonic-integrated quantum systems compliant with telecommunication standards. |
doi_str_mv | 10.1038/s41534-020-0263-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02900603v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488776283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e13ad2cda8c7170dd3139a4598a1655cb9dde27402bc2271a7793a63ccd491673</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxRdRsNR-AG8LnjxEM0k2yR5L_VOh4EXPIU3Sbsp2s91shX57s6yoFz0MMwy_N2_gZdk14DvAVN5HBgVlCBOcilMkzrIJwQVHnEpx_mu-zGYx7jDGUBJJGEyyh6XfVuhw1LXvT3lbhT403uSu6XWzrd0-DXk4ptrkOo9paZGuQ-Py6GtvQpObyrdX2cVG19HNvvo0e396fFss0er1-WUxXyHDCPTIAdWWGKulESCwtRRoqVlRSg28KMy6tNYRwTBZG0IEaCFKqjk1xrISuKDT7Ha8W-latZ3f6-6kgvZqOV-pYYdJiTHH9AMSezOybRcORxd7tQvHrknvKcKkFIITSf-lqKRMSOAkUTBSpgsxdm7zbQ5YDQmoMYHkj9WQgBp-JaMmJrbZuu7n8t-iT91bhZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383478162</pqid></control><display><type>article</type><title>High-quality photonic entanglement out of a stand-alone silicon chip</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Oser, Dorian ; Tanzilli, Sébastien ; Mazeas, Florent ; Alonso-Ramos, Carlos ; Le Roux, Xavier ; Sauder, Grégory ; Hua, Xin ; Alibart, Oliver ; Vivien, Laurent ; Cassan, Éric ; Labonté, Laurent</creator><creatorcontrib>Oser, Dorian ; Tanzilli, Sébastien ; Mazeas, Florent ; Alonso-Ramos, Carlos ; Le Roux, Xavier ; Sauder, Grégory ; Hua, Xin ; Alibart, Oliver ; Vivien, Laurent ; Cassan, Éric ; Labonté, Laurent</creatorcontrib><description>The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range out of a single chip remains a major challenge, mainly due to the limited performance of on-chip light rejection filters. We report a stand-alone, telecom-compliant device that integrates, on a single substrate, a nonlinear photon-pair generator and a passive pump-rejection filter. Using standard channel-grid fiber demultiplexers, we demonstrate the first entanglement qualification of such an integrated circuit, showing the highest raw quantum interference visibility for time-energy entangled photons over two telecom-wavelength bands. Genuinely pure, maximally entangled states can therefore be generated thanks to the high-level of noise suppression obtained with the pump filter. These results will certainly further promote the development of more advanced and scalable photonic-integrated quantum systems compliant with telecommunication standards.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-020-0263-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/3925 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Optics ; Photons ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory ; Wavelength</subject><ispartof>npj quantum information, 2020-03, Vol.6 (1), Article 31</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e13ad2cda8c7170dd3139a4598a1655cb9dde27402bc2271a7793a63ccd491673</citedby><cites>FETCH-LOGICAL-c421t-e13ad2cda8c7170dd3139a4598a1655cb9dde27402bc2271a7793a63ccd491673</cites><orcidid>0000-0003-4030-5821 ; 0000-0003-2802-7689 ; 0000-0001-7289-9404 ; 0000-0002-2980-7225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-020-0263-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-020-0263-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,42189,51576</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02900603$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oser, Dorian</creatorcontrib><creatorcontrib>Tanzilli, Sébastien</creatorcontrib><creatorcontrib>Mazeas, Florent</creatorcontrib><creatorcontrib>Alonso-Ramos, Carlos</creatorcontrib><creatorcontrib>Le Roux, Xavier</creatorcontrib><creatorcontrib>Sauder, Grégory</creatorcontrib><creatorcontrib>Hua, Xin</creatorcontrib><creatorcontrib>Alibart, Oliver</creatorcontrib><creatorcontrib>Vivien, Laurent</creatorcontrib><creatorcontrib>Cassan, Éric</creatorcontrib><creatorcontrib>Labonté, Laurent</creatorcontrib><title>High-quality photonic entanglement out of a stand-alone silicon chip</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range out of a single chip remains a major challenge, mainly due to the limited performance of on-chip light rejection filters. We report a stand-alone, telecom-compliant device that integrates, on a single substrate, a nonlinear photon-pair generator and a passive pump-rejection filter. Using standard channel-grid fiber demultiplexers, we demonstrate the first entanglement qualification of such an integrated circuit, showing the highest raw quantum interference visibility for time-energy entangled photons over two telecom-wavelength bands. Genuinely pure, maximally entangled states can therefore be generated thanks to the high-level of noise suppression obtained with the pump filter. These results will certainly further promote the development of more advanced and scalable photonic-integrated quantum systems compliant with telecommunication standards.</description><subject>639/766/483/3925</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><subject>Wavelength</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9LAzEQxRdRsNR-AG8LnjxEM0k2yR5L_VOh4EXPIU3Sbsp2s91shX57s6yoFz0MMwy_N2_gZdk14DvAVN5HBgVlCBOcilMkzrIJwQVHnEpx_mu-zGYx7jDGUBJJGEyyh6XfVuhw1LXvT3lbhT403uSu6XWzrd0-DXk4ptrkOo9paZGuQ-Py6GtvQpObyrdX2cVG19HNvvo0e396fFss0er1-WUxXyHDCPTIAdWWGKulESCwtRRoqVlRSg28KMy6tNYRwTBZG0IEaCFKqjk1xrISuKDT7Ha8W-latZ3f6-6kgvZqOV-pYYdJiTHH9AMSezOybRcORxd7tQvHrknvKcKkFIITSf-lqKRMSOAkUTBSpgsxdm7zbQ5YDQmoMYHkj9WQgBp-JaMmJrbZuu7n8t-iT91bhZA</recordid><startdate>20200326</startdate><enddate>20200326</enddate><creator>Oser, Dorian</creator><creator>Tanzilli, Sébastien</creator><creator>Mazeas, Florent</creator><creator>Alonso-Ramos, Carlos</creator><creator>Le Roux, Xavier</creator><creator>Sauder, Grégory</creator><creator>Hua, Xin</creator><creator>Alibart, Oliver</creator><creator>Vivien, Laurent</creator><creator>Cassan, Éric</creator><creator>Labonté, Laurent</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4030-5821</orcidid><orcidid>https://orcid.org/0000-0003-2802-7689</orcidid><orcidid>https://orcid.org/0000-0001-7289-9404</orcidid><orcidid>https://orcid.org/0000-0002-2980-7225</orcidid></search><sort><creationdate>20200326</creationdate><title>High-quality photonic entanglement out of a stand-alone silicon chip</title><author>Oser, Dorian ; Tanzilli, Sébastien ; Mazeas, Florent ; Alonso-Ramos, Carlos ; Le Roux, Xavier ; Sauder, Grégory ; Hua, Xin ; Alibart, Oliver ; Vivien, Laurent ; Cassan, Éric ; Labonté, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e13ad2cda8c7170dd3139a4598a1655cb9dde27402bc2271a7793a63ccd491673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/3925</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oser, Dorian</creatorcontrib><creatorcontrib>Tanzilli, Sébastien</creatorcontrib><creatorcontrib>Mazeas, Florent</creatorcontrib><creatorcontrib>Alonso-Ramos, Carlos</creatorcontrib><creatorcontrib>Le Roux, Xavier</creatorcontrib><creatorcontrib>Sauder, Grégory</creatorcontrib><creatorcontrib>Hua, Xin</creatorcontrib><creatorcontrib>Alibart, Oliver</creatorcontrib><creatorcontrib>Vivien, Laurent</creatorcontrib><creatorcontrib>Cassan, Éric</creatorcontrib><creatorcontrib>Labonté, Laurent</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oser, Dorian</au><au>Tanzilli, Sébastien</au><au>Mazeas, Florent</au><au>Alonso-Ramos, Carlos</au><au>Le Roux, Xavier</au><au>Sauder, Grégory</au><au>Hua, Xin</au><au>Alibart, Oliver</au><au>Vivien, Laurent</au><au>Cassan, Éric</au><au>Labonté, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-quality photonic entanglement out of a stand-alone silicon chip</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2020-03-26</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>31</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range out of a single chip remains a major challenge, mainly due to the limited performance of on-chip light rejection filters. We report a stand-alone, telecom-compliant device that integrates, on a single substrate, a nonlinear photon-pair generator and a passive pump-rejection filter. Using standard channel-grid fiber demultiplexers, we demonstrate the first entanglement qualification of such an integrated circuit, showing the highest raw quantum interference visibility for time-energy entangled photons over two telecom-wavelength bands. Genuinely pure, maximally entangled states can therefore be generated thanks to the high-level of noise suppression obtained with the pump filter. These results will certainly further promote the development of more advanced and scalable photonic-integrated quantum systems compliant with telecommunication standards.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-020-0263-7</doi><orcidid>https://orcid.org/0000-0003-4030-5821</orcidid><orcidid>https://orcid.org/0000-0003-2802-7689</orcidid><orcidid>https://orcid.org/0000-0001-7289-9404</orcidid><orcidid>https://orcid.org/0000-0002-2980-7225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-6387 |
ispartof | npj quantum information, 2020-03, Vol.6 (1), Article 31 |
issn | 2056-6387 2056-6387 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02900603v1 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free |
subjects | 639/766/483/3925 639/766/483/481 Classical and Quantum Gravitation Optics Photons Physics Physics and Astronomy Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Relativity Theory Spintronics String Theory Wavelength |
title | High-quality photonic entanglement out of a stand-alone silicon chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-quality%20photonic%20entanglement%20out%20of%20a%20stand-alone%20silicon%20chip&rft.jtitle=npj%20quantum%20information&rft.au=Oser,%20Dorian&rft.date=2020-03-26&rft.volume=6&rft.issue=1&rft.artnum=31&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-020-0263-7&rft_dat=%3Cproquest_hal_p%3E2488776283%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383478162&rft_id=info:pmid/&rfr_iscdi=true |