High-quality photonic entanglement out of a stand-alone silicon chip

The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2020-03, Vol.6 (1), Article 31
Hauptverfasser: Oser, Dorian, Tanzilli, Sébastien, Mazeas, Florent, Alonso-Ramos, Carlos, Le Roux, Xavier, Sauder, Grégory, Hua, Xin, Alibart, Oliver, Vivien, Laurent, Cassan, Éric, Labonté, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj quantum information
container_volume 6
creator Oser, Dorian
Tanzilli, Sébastien
Mazeas, Florent
Alonso-Ramos, Carlos
Le Roux, Xavier
Sauder, Grégory
Hua, Xin
Alibart, Oliver
Vivien, Laurent
Cassan, Éric
Labonté, Laurent
description The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range out of a single chip remains a major challenge, mainly due to the limited performance of on-chip light rejection filters. We report a stand-alone, telecom-compliant device that integrates, on a single substrate, a nonlinear photon-pair generator and a passive pump-rejection filter. Using standard channel-grid fiber demultiplexers, we demonstrate the first entanglement qualification of such an integrated circuit, showing the highest raw quantum interference visibility for time-energy entangled photons over two telecom-wavelength bands. Genuinely pure, maximally entangled states can therefore be generated thanks to the high-level of noise suppression obtained with the pump filter. These results will certainly further promote the development of more advanced and scalable photonic-integrated quantum systems compliant with telecommunication standards.
doi_str_mv 10.1038/s41534-020-0263-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02900603v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488776283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e13ad2cda8c7170dd3139a4598a1655cb9dde27402bc2271a7793a63ccd491673</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxRdRsNR-AG8LnjxEM0k2yR5L_VOh4EXPIU3Sbsp2s91shX57s6yoFz0MMwy_N2_gZdk14DvAVN5HBgVlCBOcilMkzrIJwQVHnEpx_mu-zGYx7jDGUBJJGEyyh6XfVuhw1LXvT3lbhT403uSu6XWzrd0-DXk4ptrkOo9paZGuQ-Py6GtvQpObyrdX2cVG19HNvvo0e396fFss0er1-WUxXyHDCPTIAdWWGKulESCwtRRoqVlRSg28KMy6tNYRwTBZG0IEaCFKqjk1xrISuKDT7Ha8W-latZ3f6-6kgvZqOV-pYYdJiTHH9AMSezOybRcORxd7tQvHrknvKcKkFIITSf-lqKRMSOAkUTBSpgsxdm7zbQ5YDQmoMYHkj9WQgBp-JaMmJrbZuu7n8t-iT91bhZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383478162</pqid></control><display><type>article</type><title>High-quality photonic entanglement out of a stand-alone silicon chip</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Oser, Dorian ; Tanzilli, Sébastien ; Mazeas, Florent ; Alonso-Ramos, Carlos ; Le Roux, Xavier ; Sauder, Grégory ; Hua, Xin ; Alibart, Oliver ; Vivien, Laurent ; Cassan, Éric ; Labonté, Laurent</creator><creatorcontrib>Oser, Dorian ; Tanzilli, Sébastien ; Mazeas, Florent ; Alonso-Ramos, Carlos ; Le Roux, Xavier ; Sauder, Grégory ; Hua, Xin ; Alibart, Oliver ; Vivien, Laurent ; Cassan, Éric ; Labonté, Laurent</creatorcontrib><description>The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range out of a single chip remains a major challenge, mainly due to the limited performance of on-chip light rejection filters. We report a stand-alone, telecom-compliant device that integrates, on a single substrate, a nonlinear photon-pair generator and a passive pump-rejection filter. Using standard channel-grid fiber demultiplexers, we demonstrate the first entanglement qualification of such an integrated circuit, showing the highest raw quantum interference visibility for time-energy entangled photons over two telecom-wavelength bands. Genuinely pure, maximally entangled states can therefore be generated thanks to the high-level of noise suppression obtained with the pump filter. These results will certainly further promote the development of more advanced and scalable photonic-integrated quantum systems compliant with telecommunication standards.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-020-0263-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/3925 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Optics ; Photons ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory ; Wavelength</subject><ispartof>npj quantum information, 2020-03, Vol.6 (1), Article 31</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e13ad2cda8c7170dd3139a4598a1655cb9dde27402bc2271a7793a63ccd491673</citedby><cites>FETCH-LOGICAL-c421t-e13ad2cda8c7170dd3139a4598a1655cb9dde27402bc2271a7793a63ccd491673</cites><orcidid>0000-0003-4030-5821 ; 0000-0003-2802-7689 ; 0000-0001-7289-9404 ; 0000-0002-2980-7225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-020-0263-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-020-0263-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,42189,51576</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02900603$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oser, Dorian</creatorcontrib><creatorcontrib>Tanzilli, Sébastien</creatorcontrib><creatorcontrib>Mazeas, Florent</creatorcontrib><creatorcontrib>Alonso-Ramos, Carlos</creatorcontrib><creatorcontrib>Le Roux, Xavier</creatorcontrib><creatorcontrib>Sauder, Grégory</creatorcontrib><creatorcontrib>Hua, Xin</creatorcontrib><creatorcontrib>Alibart, Oliver</creatorcontrib><creatorcontrib>Vivien, Laurent</creatorcontrib><creatorcontrib>Cassan, Éric</creatorcontrib><creatorcontrib>Labonté, Laurent</creatorcontrib><title>High-quality photonic entanglement out of a stand-alone silicon chip</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range out of a single chip remains a major challenge, mainly due to the limited performance of on-chip light rejection filters. We report a stand-alone, telecom-compliant device that integrates, on a single substrate, a nonlinear photon-pair generator and a passive pump-rejection filter. Using standard channel-grid fiber demultiplexers, we demonstrate the first entanglement qualification of such an integrated circuit, showing the highest raw quantum interference visibility for time-energy entangled photons over two telecom-wavelength bands. Genuinely pure, maximally entangled states can therefore be generated thanks to the high-level of noise suppression obtained with the pump filter. These results will certainly further promote the development of more advanced and scalable photonic-integrated quantum systems compliant with telecommunication standards.</description><subject>639/766/483/3925</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><subject>Wavelength</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9LAzEQxRdRsNR-AG8LnjxEM0k2yR5L_VOh4EXPIU3Sbsp2s91shX57s6yoFz0MMwy_N2_gZdk14DvAVN5HBgVlCBOcilMkzrIJwQVHnEpx_mu-zGYx7jDGUBJJGEyyh6XfVuhw1LXvT3lbhT403uSu6XWzrd0-DXk4ptrkOo9paZGuQ-Py6GtvQpObyrdX2cVG19HNvvo0e396fFss0er1-WUxXyHDCPTIAdWWGKulESCwtRRoqVlRSg28KMy6tNYRwTBZG0IEaCFKqjk1xrISuKDT7Ha8W-latZ3f6-6kgvZqOV-pYYdJiTHH9AMSezOybRcORxd7tQvHrknvKcKkFIITSf-lqKRMSOAkUTBSpgsxdm7zbQ5YDQmoMYHkj9WQgBp-JaMmJrbZuu7n8t-iT91bhZA</recordid><startdate>20200326</startdate><enddate>20200326</enddate><creator>Oser, Dorian</creator><creator>Tanzilli, Sébastien</creator><creator>Mazeas, Florent</creator><creator>Alonso-Ramos, Carlos</creator><creator>Le Roux, Xavier</creator><creator>Sauder, Grégory</creator><creator>Hua, Xin</creator><creator>Alibart, Oliver</creator><creator>Vivien, Laurent</creator><creator>Cassan, Éric</creator><creator>Labonté, Laurent</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4030-5821</orcidid><orcidid>https://orcid.org/0000-0003-2802-7689</orcidid><orcidid>https://orcid.org/0000-0001-7289-9404</orcidid><orcidid>https://orcid.org/0000-0002-2980-7225</orcidid></search><sort><creationdate>20200326</creationdate><title>High-quality photonic entanglement out of a stand-alone silicon chip</title><author>Oser, Dorian ; Tanzilli, Sébastien ; Mazeas, Florent ; Alonso-Ramos, Carlos ; Le Roux, Xavier ; Sauder, Grégory ; Hua, Xin ; Alibart, Oliver ; Vivien, Laurent ; Cassan, Éric ; Labonté, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e13ad2cda8c7170dd3139a4598a1655cb9dde27402bc2271a7793a63ccd491673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/3925</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oser, Dorian</creatorcontrib><creatorcontrib>Tanzilli, Sébastien</creatorcontrib><creatorcontrib>Mazeas, Florent</creatorcontrib><creatorcontrib>Alonso-Ramos, Carlos</creatorcontrib><creatorcontrib>Le Roux, Xavier</creatorcontrib><creatorcontrib>Sauder, Grégory</creatorcontrib><creatorcontrib>Hua, Xin</creatorcontrib><creatorcontrib>Alibart, Oliver</creatorcontrib><creatorcontrib>Vivien, Laurent</creatorcontrib><creatorcontrib>Cassan, Éric</creatorcontrib><creatorcontrib>Labonté, Laurent</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oser, Dorian</au><au>Tanzilli, Sébastien</au><au>Mazeas, Florent</au><au>Alonso-Ramos, Carlos</au><au>Le Roux, Xavier</au><au>Sauder, Grégory</au><au>Hua, Xin</au><au>Alibart, Oliver</au><au>Vivien, Laurent</au><au>Cassan, Éric</au><au>Labonté, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-quality photonic entanglement out of a stand-alone silicon chip</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2020-03-26</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>31</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>The fruitful association of quantum and integrated photonics holds the promise to produce, manipulate, and detect quantum states of light using compact and scalable systems. Integrating all the building blocks necessary to produce high-quality photonic entanglement in the telecom-wavelength range out of a single chip remains a major challenge, mainly due to the limited performance of on-chip light rejection filters. We report a stand-alone, telecom-compliant device that integrates, on a single substrate, a nonlinear photon-pair generator and a passive pump-rejection filter. Using standard channel-grid fiber demultiplexers, we demonstrate the first entanglement qualification of such an integrated circuit, showing the highest raw quantum interference visibility for time-energy entangled photons over two telecom-wavelength bands. Genuinely pure, maximally entangled states can therefore be generated thanks to the high-level of noise suppression obtained with the pump filter. These results will certainly further promote the development of more advanced and scalable photonic-integrated quantum systems compliant with telecommunication standards.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-020-0263-7</doi><orcidid>https://orcid.org/0000-0003-4030-5821</orcidid><orcidid>https://orcid.org/0000-0003-2802-7689</orcidid><orcidid>https://orcid.org/0000-0001-7289-9404</orcidid><orcidid>https://orcid.org/0000-0002-2980-7225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-6387
ispartof npj quantum information, 2020-03, Vol.6 (1), Article 31
issn 2056-6387
2056-6387
language eng
recordid cdi_hal_primary_oai_HAL_hal_02900603v1
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free
subjects 639/766/483/3925
639/766/483/481
Classical and Quantum Gravitation
Optics
Photons
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Relativity Theory
Spintronics
String Theory
Wavelength
title High-quality photonic entanglement out of a stand-alone silicon chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-quality%20photonic%20entanglement%20out%20of%20a%20stand-alone%20silicon%20chip&rft.jtitle=npj%20quantum%20information&rft.au=Oser,%20Dorian&rft.date=2020-03-26&rft.volume=6&rft.issue=1&rft.artnum=31&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-020-0263-7&rft_dat=%3Cproquest_hal_p%3E2488776283%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383478162&rft_id=info:pmid/&rfr_iscdi=true