Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition

Thanks to magic-angle spinning (MAS) probes with frequencies of 60–100 kHz, the benefit of high-sensitivity 1H detection can now be broadly realized in biomolecular solid-state NMR for the analysis of microcrystalline, sedimented, or lipid-embedded preparations. Nonetheless, performing the assignmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-03, Vol.142 (12), p.5793-5799
Hauptverfasser: Stanek, Jan, Schubeis, Tobias, Paluch, Piotr, Güntert, Peter, Andreas, Loren B, Pintacuda, Guido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5799
container_issue 12
container_start_page 5793
container_title Journal of the American Chemical Society
container_volume 142
creator Stanek, Jan
Schubeis, Tobias
Paluch, Piotr
Güntert, Peter
Andreas, Loren B
Pintacuda, Guido
description Thanks to magic-angle spinning (MAS) probes with frequencies of 60–100 kHz, the benefit of high-sensitivity 1H detection can now be broadly realized in biomolecular solid-state NMR for the analysis of microcrystalline, sedimented, or lipid-embedded preparations. Nonetheless, performing the assignment of all resonances remains a rate-limiting step in protein structural studies, and even the latest optimized protocols fail to perform this step when the protein size exceeds ∼20 kDa. Here, we leverage the benefits of fast (100 kHz) MAS and high (800 MHz) magnetic fields to design an approach that lifts this limitation. Through the creation, conservation, and acquisition of independent magnetization pathways within a single triple-resonance MAS NMR experiment, a single self-consistent data set can be acquired, providing enhanced sensitivity, reduced vulnerability to machine or sample instabilities, and highly redundant linking that supports fully automated peak picking and resonance assignment. The method, dubbed RAVASSA (redundant assignment via a single simultaneous acquisition), is demonstrated with the assignment of the largest protein to date in the solid state, the 42.5 kDa maltose binding protein, using a single fully protonated microcrystalline sample and 1 week of spectrometer time.
doi_str_mv 10.1021/jacs.0c00251
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02900518v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371861418</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-2f55bbf1d3ca3df83d38a8e76339f074744f0bbe13a02fc1ee026b10f62401933</originalsourceid><addsrcrecordid>eNptkUtv1DAUhS0EotPCjjXyEqSm-Np5LkPV0krhoULXluNcD54mdmsnSJX48TiaoWxYHfvo87lXPoS8AXYGjMOHndLxjGnGeAHPyAYKzrICePmcbFgys6ouxRE5jnGXrjmv4SU5Ehx40zTFhvxul9lPasaBflT6rvcO6ZfPN_QGo3fKaaRtjHbrJnQz9YZ2KmyRfgt-RusivY3WbRM8LG5Qieisu1sdE_xEFf2eziMmmZZxVg79EmmrHxYb7Wy9e0VeGDVGfH3QE3J7efHj_Crrvn66Pm-7TOUlnzNuiqLvDQxCKzGYWgyiVjVWpRCNYVVe5blhfY8gFONGAyLjZQ_MlDxn0AhxQt7vc3-qUd4HO6nwKL2y8qrt5Oox3jBWQP0LEvtuz94H_7BgnOVko8Zx3K8vuaigLiGHOqGne1QHH2NA85QNTK7dyLUbeegm4W8PyUs_4fAE_y3j3-j11c4vwaVP-X_WH6Tvl4c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371861418</pqid></control><display><type>article</type><title>Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition</title><source>MEDLINE</source><source>ACS Publications</source><creator>Stanek, Jan ; Schubeis, Tobias ; Paluch, Piotr ; Güntert, Peter ; Andreas, Loren B ; Pintacuda, Guido</creator><creatorcontrib>Stanek, Jan ; Schubeis, Tobias ; Paluch, Piotr ; Güntert, Peter ; Andreas, Loren B ; Pintacuda, Guido</creatorcontrib><description>Thanks to magic-angle spinning (MAS) probes with frequencies of 60–100 kHz, the benefit of high-sensitivity 1H detection can now be broadly realized in biomolecular solid-state NMR for the analysis of microcrystalline, sedimented, or lipid-embedded preparations. Nonetheless, performing the assignment of all resonances remains a rate-limiting step in protein structural studies, and even the latest optimized protocols fail to perform this step when the protein size exceeds ∼20 kDa. Here, we leverage the benefits of fast (100 kHz) MAS and high (800 MHz) magnetic fields to design an approach that lifts this limitation. Through the creation, conservation, and acquisition of independent magnetization pathways within a single triple-resonance MAS NMR experiment, a single self-consistent data set can be acquired, providing enhanced sensitivity, reduced vulnerability to machine or sample instabilities, and highly redundant linking that supports fully automated peak picking and resonance assignment. The method, dubbed RAVASSA (redundant assignment via a single simultaneous acquisition), is demonstrated with the assignment of the largest protein to date in the solid state, the 42.5 kDa maltose binding protein, using a single fully protonated microcrystalline sample and 1 week of spectrometer time.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c00251</identifier><identifier>PMID: 32129995</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biochemistry ; Biochemistry, Molecular Biology ; Biophysics ; Chemical Sciences ; Escherichia coli - chemistry ; Escherichia coli Proteins - analysis ; Life Sciences ; Maltose-Binding Proteins - analysis ; Nuclear Magnetic Resonance, Biomolecular - methods ; Proton Magnetic Resonance Spectroscopy - methods</subject><ispartof>Journal of the American Chemical Society, 2020-03, Vol.142 (12), p.5793-5799</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-2f55bbf1d3ca3df83d38a8e76339f074744f0bbe13a02fc1ee026b10f62401933</citedby><cites>FETCH-LOGICAL-a462t-2f55bbf1d3ca3df83d38a8e76339f074744f0bbe13a02fc1ee026b10f62401933</cites><orcidid>0000-0001-7757-2144 ; 0000-0003-3216-9065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c00251$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c00251$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32129995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02900518$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stanek, Jan</creatorcontrib><creatorcontrib>Schubeis, Tobias</creatorcontrib><creatorcontrib>Paluch, Piotr</creatorcontrib><creatorcontrib>Güntert, Peter</creatorcontrib><creatorcontrib>Andreas, Loren B</creatorcontrib><creatorcontrib>Pintacuda, Guido</creatorcontrib><title>Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Thanks to magic-angle spinning (MAS) probes with frequencies of 60–100 kHz, the benefit of high-sensitivity 1H detection can now be broadly realized in biomolecular solid-state NMR for the analysis of microcrystalline, sedimented, or lipid-embedded preparations. Nonetheless, performing the assignment of all resonances remains a rate-limiting step in protein structural studies, and even the latest optimized protocols fail to perform this step when the protein size exceeds ∼20 kDa. Here, we leverage the benefits of fast (100 kHz) MAS and high (800 MHz) magnetic fields to design an approach that lifts this limitation. Through the creation, conservation, and acquisition of independent magnetization pathways within a single triple-resonance MAS NMR experiment, a single self-consistent data set can be acquired, providing enhanced sensitivity, reduced vulnerability to machine or sample instabilities, and highly redundant linking that supports fully automated peak picking and resonance assignment. The method, dubbed RAVASSA (redundant assignment via a single simultaneous acquisition), is demonstrated with the assignment of the largest protein to date in the solid state, the 42.5 kDa maltose binding protein, using a single fully protonated microcrystalline sample and 1 week of spectrometer time.</description><subject>Analytical chemistry</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Chemical Sciences</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli Proteins - analysis</subject><subject>Life Sciences</subject><subject>Maltose-Binding Proteins - analysis</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Proton Magnetic Resonance Spectroscopy - methods</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtv1DAUhS0EotPCjjXyEqSm-Np5LkPV0krhoULXluNcD54mdmsnSJX48TiaoWxYHfvo87lXPoS8AXYGjMOHndLxjGnGeAHPyAYKzrICePmcbFgys6ouxRE5jnGXrjmv4SU5Ehx40zTFhvxul9lPasaBflT6rvcO6ZfPN_QGo3fKaaRtjHbrJnQz9YZ2KmyRfgt-RusivY3WbRM8LG5Qieisu1sdE_xEFf2eziMmmZZxVg79EmmrHxYb7Wy9e0VeGDVGfH3QE3J7efHj_Crrvn66Pm-7TOUlnzNuiqLvDQxCKzGYWgyiVjVWpRCNYVVe5blhfY8gFONGAyLjZQ_MlDxn0AhxQt7vc3-qUd4HO6nwKL2y8qrt5Oox3jBWQP0LEvtuz94H_7BgnOVko8Zx3K8vuaigLiGHOqGne1QHH2NA85QNTK7dyLUbeegm4W8PyUs_4fAE_y3j3-j11c4vwaVP-X_WH6Tvl4c</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Stanek, Jan</creator><creator>Schubeis, Tobias</creator><creator>Paluch, Piotr</creator><creator>Güntert, Peter</creator><creator>Andreas, Loren B</creator><creator>Pintacuda, Guido</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7757-2144</orcidid><orcidid>https://orcid.org/0000-0003-3216-9065</orcidid></search><sort><creationdate>20200325</creationdate><title>Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition</title><author>Stanek, Jan ; Schubeis, Tobias ; Paluch, Piotr ; Güntert, Peter ; Andreas, Loren B ; Pintacuda, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-2f55bbf1d3ca3df83d38a8e76339f074744f0bbe13a02fc1ee026b10f62401933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Chemical Sciences</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli Proteins - analysis</topic><topic>Life Sciences</topic><topic>Maltose-Binding Proteins - analysis</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Proton Magnetic Resonance Spectroscopy - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanek, Jan</creatorcontrib><creatorcontrib>Schubeis, Tobias</creatorcontrib><creatorcontrib>Paluch, Piotr</creatorcontrib><creatorcontrib>Güntert, Peter</creatorcontrib><creatorcontrib>Andreas, Loren B</creatorcontrib><creatorcontrib>Pintacuda, Guido</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanek, Jan</au><au>Schubeis, Tobias</au><au>Paluch, Piotr</au><au>Güntert, Peter</au><au>Andreas, Loren B</au><au>Pintacuda, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-03-25</date><risdate>2020</risdate><volume>142</volume><issue>12</issue><spage>5793</spage><epage>5799</epage><pages>5793-5799</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Thanks to magic-angle spinning (MAS) probes with frequencies of 60–100 kHz, the benefit of high-sensitivity 1H detection can now be broadly realized in biomolecular solid-state NMR for the analysis of microcrystalline, sedimented, or lipid-embedded preparations. Nonetheless, performing the assignment of all resonances remains a rate-limiting step in protein structural studies, and even the latest optimized protocols fail to perform this step when the protein size exceeds ∼20 kDa. Here, we leverage the benefits of fast (100 kHz) MAS and high (800 MHz) magnetic fields to design an approach that lifts this limitation. Through the creation, conservation, and acquisition of independent magnetization pathways within a single triple-resonance MAS NMR experiment, a single self-consistent data set can be acquired, providing enhanced sensitivity, reduced vulnerability to machine or sample instabilities, and highly redundant linking that supports fully automated peak picking and resonance assignment. The method, dubbed RAVASSA (redundant assignment via a single simultaneous acquisition), is demonstrated with the assignment of the largest protein to date in the solid state, the 42.5 kDa maltose binding protein, using a single fully protonated microcrystalline sample and 1 week of spectrometer time.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32129995</pmid><doi>10.1021/jacs.0c00251</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7757-2144</orcidid><orcidid>https://orcid.org/0000-0003-3216-9065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-03, Vol.142 (12), p.5793-5799
issn 0002-7863
1520-5126
language eng
recordid cdi_hal_primary_oai_HAL_hal_02900518v1
source MEDLINE; ACS Publications
subjects Analytical chemistry
Biochemistry
Biochemistry, Molecular Biology
Biophysics
Chemical Sciences
Escherichia coli - chemistry
Escherichia coli Proteins - analysis
Life Sciences
Maltose-Binding Proteins - analysis
Nuclear Magnetic Resonance, Biomolecular - methods
Proton Magnetic Resonance Spectroscopy - methods
title Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Backbone%20NMR%20Resonance%20Assignment%20of%20Large%20Proteins%20Using%20Redundant%20Linking%20from%20a%20Single%20Simultaneous%20Acquisition&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Stanek,%20Jan&rft.date=2020-03-25&rft.volume=142&rft.issue=12&rft.spage=5793&rft.epage=5799&rft.pages=5793-5799&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c00251&rft_dat=%3Cproquest_hal_p%3E2371861418%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371861418&rft_id=info:pmid/32129995&rfr_iscdi=true