Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation
An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission elect...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139668, Article 139668 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 139668 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 793 |
creator | Masuda, Takahiro Sauvage, Xavier Hirosawa, Shoichi Horita, Zenji |
description | An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission electron microscopy and atom probe tomography. The mechanism for the high strength was clarified in terms of solid-solution hardening, cluster hardening, work hardening, dispersion hardening and grain boundary hardening. It is shown that the segregation of solute atoms at grain boundaries including subgrain boundaries plays a significant role for the enhancement of the tensile strength. |
doi_str_mv | 10.1016/j.msea.2020.139668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02899710v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320307462</els_id><sourcerecordid>2462673434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-b1934fb5e6f16113b7f2458599d90ca30e19386189e8de756055f962e7ddaa3f3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPBU8eeiajzZtwEtZ1BVWvOg5pM1rm9JNNeku7M3_4D_0l5ili0d58B4MM8O8Qeia4AXBhN91i40HtaCYBoAJzvMTNCN5xuJEMH6KZlhQEqdYsHN04X2HMSYJTmeoKqrWwM7YJmpN0_b7yI8ObDO2YEFHRf_z9b3chvXSRKrvh31U7qPGKWMjB7WxsAE7RsrqI1gOW6uVCzbQOGjUaAZ7ic5q1Xu4Ot45en98eFuu4vXr0_OyWMdVktExLolgSV2mwGvCCWFlVtMkzVMhtMCVYhgCIeckF5BryFKO07QWnEKmtVKsZnN0O_m2qpcfzmxCDjkoI1fFWh4wTHMhMoJ3JHBvJu6HGz634EfZDVtnQzxJE055xpIwc0QnVuUG78PDf7YEy0PxspOH4uWheDkVH0T3kwjCrzsDTvrKgK1AGwfVKPVg_pP_ApFBjSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462673434</pqid></control><display><type>article</type><title>Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Masuda, Takahiro ; Sauvage, Xavier ; Hirosawa, Shoichi ; Horita, Zenji</creator><creatorcontrib>Masuda, Takahiro ; Sauvage, Xavier ; Hirosawa, Shoichi ; Horita, Zenji</creatorcontrib><description>An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission electron microscopy and atom probe tomography. The mechanism for the high strength was clarified in terms of solid-solution hardening, cluster hardening, work hardening, dispersion hardening and grain boundary hardening. It is shown that the segregation of solute atoms at grain boundaries including subgrain boundaries plays a significant role for the enhancement of the tensile strength.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.139668</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Age hardening ; Aluminum alloys ; Aluminum base alloys ; Condensed Matter ; Copper ; Dispersion hardening ; Grain boundaries ; Grain Boundary Segregation ; Grain refinement ; Grain sub boundaries ; Hardenability ; High strength ; Materials Science ; Physics ; Severe plastic deformation ; Solid solutions ; Solution strengthening ; Tensile strength ; Ultrafines ; Work hardening</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139668, Article 139668</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 19, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-b1934fb5e6f16113b7f2458599d90ca30e19386189e8de756055f962e7ddaa3f3</citedby><cites>FETCH-LOGICAL-c472t-b1934fb5e6f16113b7f2458599d90ca30e19386189e8de756055f962e7ddaa3f3</cites><orcidid>0000-0001-8247-803X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.139668$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02899710$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Masuda, Takahiro</creatorcontrib><creatorcontrib>Sauvage, Xavier</creatorcontrib><creatorcontrib>Hirosawa, Shoichi</creatorcontrib><creatorcontrib>Horita, Zenji</creatorcontrib><title>Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission electron microscopy and atom probe tomography. The mechanism for the high strength was clarified in terms of solid-solution hardening, cluster hardening, work hardening, dispersion hardening and grain boundary hardening. It is shown that the segregation of solute atoms at grain boundaries including subgrain boundaries plays a significant role for the enhancement of the tensile strength.</description><subject>Age hardening</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Condensed Matter</subject><subject>Copper</subject><subject>Dispersion hardening</subject><subject>Grain boundaries</subject><subject>Grain Boundary Segregation</subject><subject>Grain refinement</subject><subject>Grain sub boundaries</subject><subject>Hardenability</subject><subject>High strength</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Severe plastic deformation</subject><subject>Solid solutions</subject><subject>Solution strengthening</subject><subject>Tensile strength</subject><subject>Ultrafines</subject><subject>Work hardening</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPBU8eeiajzZtwEtZ1BVWvOg5pM1rm9JNNeku7M3_4D_0l5ili0d58B4MM8O8Qeia4AXBhN91i40HtaCYBoAJzvMTNCN5xuJEMH6KZlhQEqdYsHN04X2HMSYJTmeoKqrWwM7YJmpN0_b7yI8ObDO2YEFHRf_z9b3chvXSRKrvh31U7qPGKWMjB7WxsAE7RsrqI1gOW6uVCzbQOGjUaAZ7ic5q1Xu4Ot45en98eFuu4vXr0_OyWMdVktExLolgSV2mwGvCCWFlVtMkzVMhtMCVYhgCIeckF5BryFKO07QWnEKmtVKsZnN0O_m2qpcfzmxCDjkoI1fFWh4wTHMhMoJ3JHBvJu6HGz634EfZDVtnQzxJE055xpIwc0QnVuUG78PDf7YEy0PxspOH4uWheDkVH0T3kwjCrzsDTvrKgK1AGwfVKPVg_pP_ApFBjSs</recordid><startdate>20200819</startdate><enddate>20200819</enddate><creator>Masuda, Takahiro</creator><creator>Sauvage, Xavier</creator><creator>Hirosawa, Shoichi</creator><creator>Horita, Zenji</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8247-803X</orcidid></search><sort><creationdate>20200819</creationdate><title>Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation</title><author>Masuda, Takahiro ; Sauvage, Xavier ; Hirosawa, Shoichi ; Horita, Zenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-b1934fb5e6f16113b7f2458599d90ca30e19386189e8de756055f962e7ddaa3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age hardening</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Condensed Matter</topic><topic>Copper</topic><topic>Dispersion hardening</topic><topic>Grain boundaries</topic><topic>Grain Boundary Segregation</topic><topic>Grain refinement</topic><topic>Grain sub boundaries</topic><topic>Hardenability</topic><topic>High strength</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Severe plastic deformation</topic><topic>Solid solutions</topic><topic>Solution strengthening</topic><topic>Tensile strength</topic><topic>Ultrafines</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masuda, Takahiro</creatorcontrib><creatorcontrib>Sauvage, Xavier</creatorcontrib><creatorcontrib>Hirosawa, Shoichi</creatorcontrib><creatorcontrib>Horita, Zenji</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masuda, Takahiro</au><au>Sauvage, Xavier</au><au>Hirosawa, Shoichi</au><au>Horita, Zenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-08-19</date><risdate>2020</risdate><volume>793</volume><spage>139668</spage><pages>139668-</pages><artnum>139668</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission electron microscopy and atom probe tomography. The mechanism for the high strength was clarified in terms of solid-solution hardening, cluster hardening, work hardening, dispersion hardening and grain boundary hardening. It is shown that the segregation of solute atoms at grain boundaries including subgrain boundaries plays a significant role for the enhancement of the tensile strength.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.139668</doi><orcidid>https://orcid.org/0000-0001-8247-803X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139668, Article 139668 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02899710v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Age hardening Aluminum alloys Aluminum base alloys Condensed Matter Copper Dispersion hardening Grain boundaries Grain Boundary Segregation Grain refinement Grain sub boundaries Hardenability High strength Materials Science Physics Severe plastic deformation Solid solutions Solution strengthening Tensile strength Ultrafines Work hardening |
title | Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20highly%20strengthened%20Al%E2%80%93Cu%E2%80%93Mg%20alloy%20by%20grain%20refinement%20and%20grain%20boundary%20segregation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Masuda,%20Takahiro&rft.date=2020-08-19&rft.volume=793&rft.spage=139668&rft.pages=139668-&rft.artnum=139668&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.139668&rft_dat=%3Cproquest_hal_p%3E2462673434%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462673434&rft_id=info:pmid/&rft_els_id=S0921509320307462&rfr_iscdi=true |