Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation

An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139668, Article 139668
Hauptverfasser: Masuda, Takahiro, Sauvage, Xavier, Hirosawa, Shoichi, Horita, Zenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 139668
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 793
creator Masuda, Takahiro
Sauvage, Xavier
Hirosawa, Shoichi
Horita, Zenji
description An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission electron microscopy and atom probe tomography. The mechanism for the high strength was clarified in terms of solid-solution hardening, cluster hardening, work hardening, dispersion hardening and grain boundary hardening. It is shown that the segregation of solute atoms at grain boundaries including subgrain boundaries plays a significant role for the enhancement of the tensile strength.
doi_str_mv 10.1016/j.msea.2020.139668
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02899710v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320307462</els_id><sourcerecordid>2462673434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-b1934fb5e6f16113b7f2458599d90ca30e19386189e8de756055f962e7ddaa3f3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPBU8eeiajzZtwEtZ1BVWvOg5pM1rm9JNNeku7M3_4D_0l5ili0d58B4MM8O8Qeia4AXBhN91i40HtaCYBoAJzvMTNCN5xuJEMH6KZlhQEqdYsHN04X2HMSYJTmeoKqrWwM7YJmpN0_b7yI8ObDO2YEFHRf_z9b3chvXSRKrvh31U7qPGKWMjB7WxsAE7RsrqI1gOW6uVCzbQOGjUaAZ7ic5q1Xu4Ot45en98eFuu4vXr0_OyWMdVktExLolgSV2mwGvCCWFlVtMkzVMhtMCVYhgCIeckF5BryFKO07QWnEKmtVKsZnN0O_m2qpcfzmxCDjkoI1fFWh4wTHMhMoJ3JHBvJu6HGz634EfZDVtnQzxJE055xpIwc0QnVuUG78PDf7YEy0PxspOH4uWheDkVH0T3kwjCrzsDTvrKgK1AGwfVKPVg_pP_ApFBjSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462673434</pqid></control><display><type>article</type><title>Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Masuda, Takahiro ; Sauvage, Xavier ; Hirosawa, Shoichi ; Horita, Zenji</creator><creatorcontrib>Masuda, Takahiro ; Sauvage, Xavier ; Hirosawa, Shoichi ; Horita, Zenji</creatorcontrib><description>An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission electron microscopy and atom probe tomography. The mechanism for the high strength was clarified in terms of solid-solution hardening, cluster hardening, work hardening, dispersion hardening and grain boundary hardening. It is shown that the segregation of solute atoms at grain boundaries including subgrain boundaries plays a significant role for the enhancement of the tensile strength.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.139668</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Age hardening ; Aluminum alloys ; Aluminum base alloys ; Condensed Matter ; Copper ; Dispersion hardening ; Grain boundaries ; Grain Boundary Segregation ; Grain refinement ; Grain sub boundaries ; Hardenability ; High strength ; Materials Science ; Physics ; Severe plastic deformation ; Solid solutions ; Solution strengthening ; Tensile strength ; Ultrafines ; Work hardening</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139668, Article 139668</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 19, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-b1934fb5e6f16113b7f2458599d90ca30e19386189e8de756055f962e7ddaa3f3</citedby><cites>FETCH-LOGICAL-c472t-b1934fb5e6f16113b7f2458599d90ca30e19386189e8de756055f962e7ddaa3f3</cites><orcidid>0000-0001-8247-803X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.139668$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02899710$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Masuda, Takahiro</creatorcontrib><creatorcontrib>Sauvage, Xavier</creatorcontrib><creatorcontrib>Hirosawa, Shoichi</creatorcontrib><creatorcontrib>Horita, Zenji</creatorcontrib><title>Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission electron microscopy and atom probe tomography. The mechanism for the high strength was clarified in terms of solid-solution hardening, cluster hardening, work hardening, dispersion hardening and grain boundary hardening. It is shown that the segregation of solute atoms at grain boundaries including subgrain boundaries plays a significant role for the enhancement of the tensile strength.</description><subject>Age hardening</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Condensed Matter</subject><subject>Copper</subject><subject>Dispersion hardening</subject><subject>Grain boundaries</subject><subject>Grain Boundary Segregation</subject><subject>Grain refinement</subject><subject>Grain sub boundaries</subject><subject>Hardenability</subject><subject>High strength</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Severe plastic deformation</subject><subject>Solid solutions</subject><subject>Solution strengthening</subject><subject>Tensile strength</subject><subject>Ultrafines</subject><subject>Work hardening</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPBU8eeiajzZtwEtZ1BVWvOg5pM1rm9JNNeku7M3_4D_0l5ili0d58B4MM8O8Qeia4AXBhN91i40HtaCYBoAJzvMTNCN5xuJEMH6KZlhQEqdYsHN04X2HMSYJTmeoKqrWwM7YJmpN0_b7yI8ObDO2YEFHRf_z9b3chvXSRKrvh31U7qPGKWMjB7WxsAE7RsrqI1gOW6uVCzbQOGjUaAZ7ic5q1Xu4Ot45en98eFuu4vXr0_OyWMdVktExLolgSV2mwGvCCWFlVtMkzVMhtMCVYhgCIeckF5BryFKO07QWnEKmtVKsZnN0O_m2qpcfzmxCDjkoI1fFWh4wTHMhMoJ3JHBvJu6HGz634EfZDVtnQzxJE055xpIwc0QnVuUG78PDf7YEy0PxspOH4uWheDkVH0T3kwjCrzsDTvrKgK1AGwfVKPVg_pP_ApFBjSs</recordid><startdate>20200819</startdate><enddate>20200819</enddate><creator>Masuda, Takahiro</creator><creator>Sauvage, Xavier</creator><creator>Hirosawa, Shoichi</creator><creator>Horita, Zenji</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8247-803X</orcidid></search><sort><creationdate>20200819</creationdate><title>Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation</title><author>Masuda, Takahiro ; Sauvage, Xavier ; Hirosawa, Shoichi ; Horita, Zenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-b1934fb5e6f16113b7f2458599d90ca30e19386189e8de756055f962e7ddaa3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age hardening</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Condensed Matter</topic><topic>Copper</topic><topic>Dispersion hardening</topic><topic>Grain boundaries</topic><topic>Grain Boundary Segregation</topic><topic>Grain refinement</topic><topic>Grain sub boundaries</topic><topic>Hardenability</topic><topic>High strength</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Severe plastic deformation</topic><topic>Solid solutions</topic><topic>Solution strengthening</topic><topic>Tensile strength</topic><topic>Ultrafines</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masuda, Takahiro</creatorcontrib><creatorcontrib>Sauvage, Xavier</creatorcontrib><creatorcontrib>Hirosawa, Shoichi</creatorcontrib><creatorcontrib>Horita, Zenji</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masuda, Takahiro</au><au>Sauvage, Xavier</au><au>Hirosawa, Shoichi</au><au>Horita, Zenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-08-19</date><risdate>2020</risdate><volume>793</volume><spage>139668</spage><pages>139668-</pages><artnum>139668</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>An age-hardenable Al–Cu–Mg alloy (A2024) was processed by high-pressure torsion (HPT) for producing an ultrafine-grained structure. The alloy was further aged for extra strengthening. The tensile strength then reached a value as high as ~1 GPa. The microstructures were analyzed by transmission electron microscopy and atom probe tomography. The mechanism for the high strength was clarified in terms of solid-solution hardening, cluster hardening, work hardening, dispersion hardening and grain boundary hardening. It is shown that the segregation of solute atoms at grain boundaries including subgrain boundaries plays a significant role for the enhancement of the tensile strength.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.139668</doi><orcidid>https://orcid.org/0000-0001-8247-803X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139668, Article 139668
issn 0921-5093
1873-4936
language eng
recordid cdi_hal_primary_oai_HAL_hal_02899710v1
source Access via ScienceDirect (Elsevier)
subjects Age hardening
Aluminum alloys
Aluminum base alloys
Condensed Matter
Copper
Dispersion hardening
Grain boundaries
Grain Boundary Segregation
Grain refinement
Grain sub boundaries
Hardenability
High strength
Materials Science
Physics
Severe plastic deformation
Solid solutions
Solution strengthening
Tensile strength
Ultrafines
Work hardening
title Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20highly%20strengthened%20Al%E2%80%93Cu%E2%80%93Mg%20alloy%20by%20grain%20refinement%20and%20grain%20boundary%20segregation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Masuda,%20Takahiro&rft.date=2020-08-19&rft.volume=793&rft.spage=139668&rft.pages=139668-&rft.artnum=139668&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.139668&rft_dat=%3Cproquest_hal_p%3E2462673434%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462673434&rft_id=info:pmid/&rft_els_id=S0921509320307462&rfr_iscdi=true