Power partitions and saddle-point method
For k⩾1, denote by pk(n) the number of partitions of an integer n into k-th powers. In this note, we apply the saddle-point method to provide a new proof for the well-known asymptotic expansion of pk(n). This approach turns out to significantly simplify those of Wright (1934), Vaughan (2015) and Gaf...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2019-11, Vol.204, p.435-445 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 445 |
---|---|
container_issue | |
container_start_page | 435 |
container_title | Journal of number theory |
container_volume | 204 |
creator | Tenenbaum, Gérald Wu, Jie Li, Ya-Li |
description | For k⩾1, denote by pk(n) the number of partitions of an integer n into k-th powers. In this note, we apply the saddle-point method to provide a new proof for the well-known asymptotic expansion of pk(n). This approach turns out to significantly simplify those of Wright (1934), Vaughan (2015) and Gafni (2016). |
doi_str_mv | 10.1016/j.jnt.2019.04.013 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02891953v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X19301532</els_id><sourcerecordid>oai_HAL_hal_02891953v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-2fb62021b8a964c9e4e6f212c777ff7df78ed4242db833a32573e766c6b7b5f03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN0sdTHjvUkmmcFVKb6goAsFdyGTB83QzpQkVPz3Tqm4dHXgcr4L5yPkGqFCQHHXV_2QKwrYVsArQHZCZgitKFHUzSmZAVBaMuSf5-QipR4AsZb1jNy8jV8uFjsdc8hhHFKhB1skbe3GlbsxDLnYurwe7SU583qT3NVvzsnH48P78rlcvT69LBer0jDJc0l9JyhQ7BrdCm5ax53wFKmRUnovrZeNs5xyaruGMc1oLZmTQhjRya72wObk9vh3rTdqF8NWx2816qCeFyt1uAFtWmxrtsepi8euiWNK0fk_AEEdtKheTVrUQYsCriYtE3N_ZNw0Yh9cVMkENxhnQ3QmKzuGf-gfb99pHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Power partitions and saddle-point method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tenenbaum, Gérald ; Wu, Jie ; Li, Ya-Li</creator><creatorcontrib>Tenenbaum, Gérald ; Wu, Jie ; Li, Ya-Li</creatorcontrib><description>For k⩾1, denote by pk(n) the number of partitions of an integer n into k-th powers. In this note, we apply the saddle-point method to provide a new proof for the well-known asymptotic expansion of pk(n). This approach turns out to significantly simplify those of Wright (1934), Vaughan (2015) and Gafni (2016).</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1016/j.jnt.2019.04.013</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Asymptotic estimates ; Mathematics ; Number Theory ; Partitions ; Partitions into powers ; Saddle-point method</subject><ispartof>Journal of number theory, 2019-11, Vol.204, p.435-445</ispartof><rights>2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-2fb62021b8a964c9e4e6f212c777ff7df78ed4242db833a32573e766c6b7b5f03</citedby><cites>FETCH-LOGICAL-c374t-2fb62021b8a964c9e4e6f212c777ff7df78ed4242db833a32573e766c6b7b5f03</cites><orcidid>0000-0002-0478-3693 ; 0000-0002-6893-7938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnt.2019.04.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02891953$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tenenbaum, Gérald</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Li, Ya-Li</creatorcontrib><title>Power partitions and saddle-point method</title><title>Journal of number theory</title><description>For k⩾1, denote by pk(n) the number of partitions of an integer n into k-th powers. In this note, we apply the saddle-point method to provide a new proof for the well-known asymptotic expansion of pk(n). This approach turns out to significantly simplify those of Wright (1934), Vaughan (2015) and Gafni (2016).</description><subject>Asymptotic estimates</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Partitions</subject><subject>Partitions into powers</subject><subject>Saddle-point method</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wN0sdTHjvUkmmcFVKb6goAsFdyGTB83QzpQkVPz3Tqm4dHXgcr4L5yPkGqFCQHHXV_2QKwrYVsArQHZCZgitKFHUzSmZAVBaMuSf5-QipR4AsZb1jNy8jV8uFjsdc8hhHFKhB1skbe3GlbsxDLnYurwe7SU583qT3NVvzsnH48P78rlcvT69LBer0jDJc0l9JyhQ7BrdCm5ax53wFKmRUnovrZeNs5xyaruGMc1oLZmTQhjRya72wObk9vh3rTdqF8NWx2816qCeFyt1uAFtWmxrtsepi8euiWNK0fk_AEEdtKheTVrUQYsCriYtE3N_ZNw0Yh9cVMkENxhnQ3QmKzuGf-gfb99pHw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Tenenbaum, Gérald</creator><creator>Wu, Jie</creator><creator>Li, Ya-Li</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0478-3693</orcidid><orcidid>https://orcid.org/0000-0002-6893-7938</orcidid></search><sort><creationdate>201911</creationdate><title>Power partitions and saddle-point method</title><author>Tenenbaum, Gérald ; Wu, Jie ; Li, Ya-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-2fb62021b8a964c9e4e6f212c777ff7df78ed4242db833a32573e766c6b7b5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic estimates</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Partitions</topic><topic>Partitions into powers</topic><topic>Saddle-point method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenenbaum, Gérald</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Li, Ya-Li</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenenbaum, Gérald</au><au>Wu, Jie</au><au>Li, Ya-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power partitions and saddle-point method</atitle><jtitle>Journal of number theory</jtitle><date>2019-11</date><risdate>2019</risdate><volume>204</volume><spage>435</spage><epage>445</epage><pages>435-445</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>For k⩾1, denote by pk(n) the number of partitions of an integer n into k-th powers. In this note, we apply the saddle-point method to provide a new proof for the well-known asymptotic expansion of pk(n). This approach turns out to significantly simplify those of Wright (1934), Vaughan (2015) and Gafni (2016).</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jnt.2019.04.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0478-3693</orcidid><orcidid>https://orcid.org/0000-0002-6893-7938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-314X |
ispartof | Journal of number theory, 2019-11, Vol.204, p.435-445 |
issn | 0022-314X 1096-1658 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02891953v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Asymptotic estimates Mathematics Number Theory Partitions Partitions into powers Saddle-point method |
title | Power partitions and saddle-point method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20partitions%20and%20saddle-point%20method&rft.jtitle=Journal%20of%20number%20theory&rft.au=Tenenbaum,%20G%C3%A9rald&rft.date=2019-11&rft.volume=204&rft.spage=435&rft.epage=445&rft.pages=435-445&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1016/j.jnt.2019.04.013&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02891953v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022314X19301532&rfr_iscdi=true |