3D Semi-Analytical Modeling and Optimization of Fully HTS Ironless Axial Flux Electrical Machines

•A rapid volume integral modeling approach is developed for HTS electrical machines design and optimization.•The use of particular volumetric basis elements helps to reduce significantly the computation time.•The model is applied to the optimization of an ironless HTS axial flux electrical machine,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. C, Superconductivity Superconductivity, 2020-07, Vol.574, p.1353660, Article 1353660
Hauptverfasser: Statra, Yazid, Menana, Hocine, Douine, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 1353660
container_title Physica. C, Superconductivity
container_volume 574
creator Statra, Yazid
Menana, Hocine
Douine, Bruno
description •A rapid volume integral modeling approach is developed for HTS electrical machines design and optimization.•The use of particular volumetric basis elements helps to reduce significantly the computation time.•The model is applied to the optimization of an ironless HTS axial flux electrical machine, where the obtained results are comforted by 3D finite element analysis.•The investigations have shown that the considered fully HTS machine has a higher torque density compared to that of conventional ones. In this paper, a three-dimensional semi-analytical approach, based on the volume integral method, is developed to compute the forces and torque in fully high temperature superconducting (HTS) ironless axial flux machine (IAFM). The use of particular volumetric basis elements helps to speed up the computation of the magnetic field. The Maxwell stress tensor method is used for the force and torque calculations, where the electromagnetic state of the superconductor is taken into account. The developed model is then introduced into a multi objective optimization procedure, based on the genetic algorithms, to maximize the magnetic torque and minimize the superconducting wire length in the considered structure, while respecting the constraints linked to the physical and mechanical properties of the considered HTS tape. It is shown that the considered fully HTS machine has a higher torque density compared to conventional one.
doi_str_mv 10.1016/j.physc.2020.1353660
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02885281v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921453419304393</els_id><sourcerecordid>2441575928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-764f39d84f2f24cf9eb3eea21fa48d441669f2ee72e13e3efdd8e644184e936a3</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWH_ewEXAlYupk5-ZZjZCqa0VKl1U1yFmvtiUdFKTqbQ-valTXJrNB5d7D-QgdEPyPslJeb_qb5b7qPs0pylhBSvL_AT1iBiwjBLOTlEvryjJeMH4ObqIcZWnRyrSQ4o94gWsbTZslNu3ViuHX3wNzjYfWDU1nm9au7bfqrW-wd7gyda5PZ6-LvBz8I2DGPFwZ9Nq4rY7PHag29BRlF7aBuIVOjPKRbg-3kv0Nhm_jqbZbP70PBrOMs0Jb7NByQ2rasENNZRrU8E7A1CUGMVFzTkpy8pQgAEFwoCBqWsBZcoFh4qVil2iu467VE5ugl2rsJdeWTkdzuQhy6kQBRXki6TubdfdBP-5hdjKld-GZCBKmpDFoKioSC3etXTwMQYwf1iSy4N4uZK_4uVBvDyKT7OHbgbpt18WgozaQqOhtiHZkbW3_wN-ANbwi_s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441575928</pqid></control><display><type>article</type><title>3D Semi-Analytical Modeling and Optimization of Fully HTS Ironless Axial Flux Electrical Machines</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Statra, Yazid ; Menana, Hocine ; Douine, Bruno</creator><creatorcontrib>Statra, Yazid ; Menana, Hocine ; Douine, Bruno</creatorcontrib><description>•A rapid volume integral modeling approach is developed for HTS electrical machines design and optimization.•The use of particular volumetric basis elements helps to reduce significantly the computation time.•The model is applied to the optimization of an ironless HTS axial flux electrical machine, where the obtained results are comforted by 3D finite element analysis.•The investigations have shown that the considered fully HTS machine has a higher torque density compared to that of conventional ones. In this paper, a three-dimensional semi-analytical approach, based on the volume integral method, is developed to compute the forces and torque in fully high temperature superconducting (HTS) ironless axial flux machine (IAFM). The use of particular volumetric basis elements helps to speed up the computation of the magnetic field. The Maxwell stress tensor method is used for the force and torque calculations, where the electromagnetic state of the superconductor is taken into account. The developed model is then introduced into a multi objective optimization procedure, based on the genetic algorithms, to maximize the magnetic torque and minimize the superconducting wire length in the considered structure, while respecting the constraints linked to the physical and mechanical properties of the considered HTS tape. It is shown that the considered fully HTS machine has a higher torque density compared to conventional one.</description><identifier>ISSN: 0921-4534</identifier><identifier>EISSN: 1873-2143</identifier><identifier>DOI: 10.1016/j.physc.2020.1353660</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Axial stress ; Condensed Matter ; Fully HTS ironless axial flux electrical machine ; Genetic algorithms ; High temperature ; Magnetic fields ; Maxwell stress tensor method ; Mechanical properties ; Multi objective optimization ; Optimization ; Physical properties ; Physics ; Superconductivity ; Superconductors ; Temperature effects ; Tensors ; Three dimensional analysis ; Three dimensional models ; Three-dimensional semi-analytical modeling approach ; Torque ; Volume integral method ; Volumetric analysis</subject><ispartof>Physica. C, Superconductivity, 2020-07, Vol.574, p.1353660, Article 1353660</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-764f39d84f2f24cf9eb3eea21fa48d441669f2ee72e13e3efdd8e644184e936a3</citedby><cites>FETCH-LOGICAL-c414t-764f39d84f2f24cf9eb3eea21fa48d441669f2ee72e13e3efdd8e644184e936a3</cites><orcidid>0000-0003-1932-0840 ; 0000-0002-9203-718X ; 0000-0002-1962-9760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921453419304393$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02885281$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Statra, Yazid</creatorcontrib><creatorcontrib>Menana, Hocine</creatorcontrib><creatorcontrib>Douine, Bruno</creatorcontrib><title>3D Semi-Analytical Modeling and Optimization of Fully HTS Ironless Axial Flux Electrical Machines</title><title>Physica. C, Superconductivity</title><description>•A rapid volume integral modeling approach is developed for HTS electrical machines design and optimization.•The use of particular volumetric basis elements helps to reduce significantly the computation time.•The model is applied to the optimization of an ironless HTS axial flux electrical machine, where the obtained results are comforted by 3D finite element analysis.•The investigations have shown that the considered fully HTS machine has a higher torque density compared to that of conventional ones. In this paper, a three-dimensional semi-analytical approach, based on the volume integral method, is developed to compute the forces and torque in fully high temperature superconducting (HTS) ironless axial flux machine (IAFM). The use of particular volumetric basis elements helps to speed up the computation of the magnetic field. The Maxwell stress tensor method is used for the force and torque calculations, where the electromagnetic state of the superconductor is taken into account. The developed model is then introduced into a multi objective optimization procedure, based on the genetic algorithms, to maximize the magnetic torque and minimize the superconducting wire length in the considered structure, while respecting the constraints linked to the physical and mechanical properties of the considered HTS tape. It is shown that the considered fully HTS machine has a higher torque density compared to conventional one.</description><subject>Analytical chemistry</subject><subject>Axial stress</subject><subject>Condensed Matter</subject><subject>Fully HTS ironless axial flux electrical machine</subject><subject>Genetic algorithms</subject><subject>High temperature</subject><subject>Magnetic fields</subject><subject>Maxwell stress tensor method</subject><subject>Mechanical properties</subject><subject>Multi objective optimization</subject><subject>Optimization</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Temperature effects</subject><subject>Tensors</subject><subject>Three dimensional analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional semi-analytical modeling approach</subject><subject>Torque</subject><subject>Volume integral method</subject><subject>Volumetric analysis</subject><issn>0921-4534</issn><issn>1873-2143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWH_ewEXAlYupk5-ZZjZCqa0VKl1U1yFmvtiUdFKTqbQ-valTXJrNB5d7D-QgdEPyPslJeb_qb5b7qPs0pylhBSvL_AT1iBiwjBLOTlEvryjJeMH4ObqIcZWnRyrSQ4o94gWsbTZslNu3ViuHX3wNzjYfWDU1nm9au7bfqrW-wd7gyda5PZ6-LvBz8I2DGPFwZ9Nq4rY7PHag29BRlF7aBuIVOjPKRbg-3kv0Nhm_jqbZbP70PBrOMs0Jb7NByQ2rasENNZRrU8E7A1CUGMVFzTkpy8pQgAEFwoCBqWsBZcoFh4qVil2iu467VE5ugl2rsJdeWTkdzuQhy6kQBRXki6TubdfdBP-5hdjKld-GZCBKmpDFoKioSC3etXTwMQYwf1iSy4N4uZK_4uVBvDyKT7OHbgbpt18WgozaQqOhtiHZkbW3_wN-ANbwi_s</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Statra, Yazid</creator><creator>Menana, Hocine</creator><creator>Douine, Bruno</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1932-0840</orcidid><orcidid>https://orcid.org/0000-0002-9203-718X</orcidid><orcidid>https://orcid.org/0000-0002-1962-9760</orcidid></search><sort><creationdate>20200715</creationdate><title>3D Semi-Analytical Modeling and Optimization of Fully HTS Ironless Axial Flux Electrical Machines</title><author>Statra, Yazid ; Menana, Hocine ; Douine, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-764f39d84f2f24cf9eb3eea21fa48d441669f2ee72e13e3efdd8e644184e936a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Axial stress</topic><topic>Condensed Matter</topic><topic>Fully HTS ironless axial flux electrical machine</topic><topic>Genetic algorithms</topic><topic>High temperature</topic><topic>Magnetic fields</topic><topic>Maxwell stress tensor method</topic><topic>Mechanical properties</topic><topic>Multi objective optimization</topic><topic>Optimization</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Temperature effects</topic><topic>Tensors</topic><topic>Three dimensional analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional semi-analytical modeling approach</topic><topic>Torque</topic><topic>Volume integral method</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Statra, Yazid</creatorcontrib><creatorcontrib>Menana, Hocine</creatorcontrib><creatorcontrib>Douine, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physica. C, Superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Statra, Yazid</au><au>Menana, Hocine</au><au>Douine, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Semi-Analytical Modeling and Optimization of Fully HTS Ironless Axial Flux Electrical Machines</atitle><jtitle>Physica. C, Superconductivity</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>574</volume><spage>1353660</spage><pages>1353660-</pages><artnum>1353660</artnum><issn>0921-4534</issn><eissn>1873-2143</eissn><abstract>•A rapid volume integral modeling approach is developed for HTS electrical machines design and optimization.•The use of particular volumetric basis elements helps to reduce significantly the computation time.•The model is applied to the optimization of an ironless HTS axial flux electrical machine, where the obtained results are comforted by 3D finite element analysis.•The investigations have shown that the considered fully HTS machine has a higher torque density compared to that of conventional ones. In this paper, a three-dimensional semi-analytical approach, based on the volume integral method, is developed to compute the forces and torque in fully high temperature superconducting (HTS) ironless axial flux machine (IAFM). The use of particular volumetric basis elements helps to speed up the computation of the magnetic field. The Maxwell stress tensor method is used for the force and torque calculations, where the electromagnetic state of the superconductor is taken into account. The developed model is then introduced into a multi objective optimization procedure, based on the genetic algorithms, to maximize the magnetic torque and minimize the superconducting wire length in the considered structure, while respecting the constraints linked to the physical and mechanical properties of the considered HTS tape. It is shown that the considered fully HTS machine has a higher torque density compared to conventional one.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physc.2020.1353660</doi><orcidid>https://orcid.org/0000-0003-1932-0840</orcidid><orcidid>https://orcid.org/0000-0002-9203-718X</orcidid><orcidid>https://orcid.org/0000-0002-1962-9760</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-4534
ispartof Physica. C, Superconductivity, 2020-07, Vol.574, p.1353660, Article 1353660
issn 0921-4534
1873-2143
language eng
recordid cdi_hal_primary_oai_HAL_hal_02885281v1
source Elsevier ScienceDirect Journals Complete
subjects Analytical chemistry
Axial stress
Condensed Matter
Fully HTS ironless axial flux electrical machine
Genetic algorithms
High temperature
Magnetic fields
Maxwell stress tensor method
Mechanical properties
Multi objective optimization
Optimization
Physical properties
Physics
Superconductivity
Superconductors
Temperature effects
Tensors
Three dimensional analysis
Three dimensional models
Three-dimensional semi-analytical modeling approach
Torque
Volume integral method
Volumetric analysis
title 3D Semi-Analytical Modeling and Optimization of Fully HTS Ironless Axial Flux Electrical Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Semi-Analytical%20Modeling%20and%20Optimization%20of%20Fully%20HTS%20Ironless%20Axial%20Flux%20Electrical%20Machines&rft.jtitle=Physica.%20C,%20Superconductivity&rft.au=Statra,%20Yazid&rft.date=2020-07-15&rft.volume=574&rft.spage=1353660&rft.pages=1353660-&rft.artnum=1353660&rft.issn=0921-4534&rft.eissn=1873-2143&rft_id=info:doi/10.1016/j.physc.2020.1353660&rft_dat=%3Cproquest_hal_p%3E2441575928%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441575928&rft_id=info:pmid/&rft_els_id=S0921453419304393&rfr_iscdi=true