AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4

The Na 2 WO 4 compound has been obtained by the conventional solid-state reaction and characterized by X -ay powder diffraction. The title material crystallizes in the cubic system with Fd-3m space group. The electrical properties of the compound have been studied using complex impedance spectroscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2018, Vol.24 (1), p.169-180
Hauptverfasser: Dkhilalli, F., Megdiche, S., Guidara, K., Rasheed, M., Barillé, R., Megdiche, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 1
container_start_page 169
container_title Ionics
container_volume 24
creator Dkhilalli, F.
Megdiche, S.
Guidara, K.
Rasheed, M.
Barillé, R.
Megdiche, M.
description The Na 2 WO 4 compound has been obtained by the conventional solid-state reaction and characterized by X -ay powder diffraction. The title material crystallizes in the cubic system with Fd-3m space group. The electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 586–679 K. Two semicircles are observed in impedance plot indicating the presence of two relaxation processes in the compound associated with the grain and grain boundary. The relaxation behavior of the grain and grain boundary of the Na 2 WO 4 are also obtained from the analyzed electrical modulus data. AC conductivity measured follows the power-law dependence σ AC ∼ω s typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process. The mechanism of conduction is probably due from the displacements of the Na+ ion in the tunnel-type cavities along [111] direction.
doi_str_mv 10.1007/s11581-017-2193-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02885130v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983411474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-a8a84e40e8e51cc0ce853b1e5eb3bb67eb5e8a1bd5ebcf4ef30620108fa7dba53</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFTx6iM8kmuz2WolYo9qLobdkkk5oad-tuUui_NyEiXjwN8_je4_EYu0S4QQB5GxBThRGgjGKcJZE6YhNUWRyBzOCYTWAmZCRByFN2FsIWIMswlhP2Nl_wwtmyK9p6X7cHTnvXdG3tLK8tz7vmgxtb8o03w-s6Wxp_4J7CztlA3FU8uLLuPnnb2U1oTUv8ycSva3HOTirTBLr4uVP2cn_3vFhGq_XD42K-iookhTYyyihBAkhRikUBBak0yZFSypM8zyTlKSmDedkLRSWoSiCLAUFVRpa5SZMpux5z302jd77-7PtpZ2q9nK_0oEGsVIoJ7LFnr0Z2591XR6HVW9d529fTOFOJQBRS9BSOVOFdCJ6q31gEPYytx7F1P7Yextaq98SjJ_Ss3ZD_k_yv6RtpFoIZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983411474</pqid></control><display><type>article</type><title>AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4</title><source>SpringerLink Journals</source><creator>Dkhilalli, F. ; Megdiche, S. ; Guidara, K. ; Rasheed, M. ; Barillé, R. ; Megdiche, M.</creator><creatorcontrib>Dkhilalli, F. ; Megdiche, S. ; Guidara, K. ; Rasheed, M. ; Barillé, R. ; Megdiche, M.</creatorcontrib><description>The Na 2 WO 4 compound has been obtained by the conventional solid-state reaction and characterized by X -ay powder diffraction. The title material crystallizes in the cubic system with Fd-3m space group. The electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 586–679 K. Two semicircles are observed in impedance plot indicating the presence of two relaxation processes in the compound associated with the grain and grain boundary. The relaxation behavior of the grain and grain boundary of the Na 2 WO 4 are also obtained from the analyzed electrical modulus data. AC conductivity measured follows the power-law dependence σ AC ∼ω s typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process. The mechanism of conduction is probably due from the displacements of the Na+ ion in the tunnel-type cavities along [111] direction.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-017-2193-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Charge transport ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical properties ; Electrical resistivity ; Electrochemistry ; Energy Storage ; Grain boundaries ; Optical and Electronic Materials ; Original Paper ; Physics ; Renewable and Green Energy ; Sodium tungstate ; Temperature dependence</subject><ispartof>Ionics, 2018, Vol.24 (1), p.169-180</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-a8a84e40e8e51cc0ce853b1e5eb3bb67eb5e8a1bd5ebcf4ef30620108fa7dba53</citedby><cites>FETCH-LOGICAL-c350t-a8a84e40e8e51cc0ce853b1e5eb3bb67eb5e8a1bd5ebcf4ef30620108fa7dba53</cites><orcidid>0000-0001-8792-5118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-017-2193-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-017-2193-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://univ-angers.hal.science/hal-02885130$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dkhilalli, F.</creatorcontrib><creatorcontrib>Megdiche, S.</creatorcontrib><creatorcontrib>Guidara, K.</creatorcontrib><creatorcontrib>Rasheed, M.</creatorcontrib><creatorcontrib>Barillé, R.</creatorcontrib><creatorcontrib>Megdiche, M.</creatorcontrib><title>AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The Na 2 WO 4 compound has been obtained by the conventional solid-state reaction and characterized by X -ay powder diffraction. The title material crystallizes in the cubic system with Fd-3m space group. The electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 586–679 K. Two semicircles are observed in impedance plot indicating the presence of two relaxation processes in the compound associated with the grain and grain boundary. The relaxation behavior of the grain and grain boundary of the Na 2 WO 4 are also obtained from the analyzed electrical modulus data. AC conductivity measured follows the power-law dependence σ AC ∼ω s typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process. The mechanism of conduction is probably due from the displacements of the Na+ ion in the tunnel-type cavities along [111] direction.</description><subject>Charge transport</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Grain boundaries</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Renewable and Green Energy</subject><subject>Sodium tungstate</subject><subject>Temperature dependence</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFTx6iM8kmuz2WolYo9qLobdkkk5oad-tuUui_NyEiXjwN8_je4_EYu0S4QQB5GxBThRGgjGKcJZE6YhNUWRyBzOCYTWAmZCRByFN2FsIWIMswlhP2Nl_wwtmyK9p6X7cHTnvXdG3tLK8tz7vmgxtb8o03w-s6Wxp_4J7CztlA3FU8uLLuPnnb2U1oTUv8ycSva3HOTirTBLr4uVP2cn_3vFhGq_XD42K-iookhTYyyihBAkhRikUBBak0yZFSypM8zyTlKSmDedkLRSWoSiCLAUFVRpa5SZMpux5z302jd77-7PtpZ2q9nK_0oEGsVIoJ7LFnr0Z2591XR6HVW9d529fTOFOJQBRS9BSOVOFdCJ6q31gEPYytx7F1P7Yextaq98SjJ_Ss3ZD_k_yv6RtpFoIZ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Dkhilalli, F.</creator><creator>Megdiche, S.</creator><creator>Guidara, K.</creator><creator>Rasheed, M.</creator><creator>Barillé, R.</creator><creator>Megdiche, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8792-5118</orcidid></search><sort><creationdate>2018</creationdate><title>AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4</title><author>Dkhilalli, F. ; Megdiche, S. ; Guidara, K. ; Rasheed, M. ; Barillé, R. ; Megdiche, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-a8a84e40e8e51cc0ce853b1e5eb3bb67eb5e8a1bd5ebcf4ef30620108fa7dba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transport</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Grain boundaries</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Renewable and Green Energy</topic><topic>Sodium tungstate</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dkhilalli, F.</creatorcontrib><creatorcontrib>Megdiche, S.</creatorcontrib><creatorcontrib>Guidara, K.</creatorcontrib><creatorcontrib>Rasheed, M.</creatorcontrib><creatorcontrib>Barillé, R.</creatorcontrib><creatorcontrib>Megdiche, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dkhilalli, F.</au><au>Megdiche, S.</au><au>Guidara, K.</au><au>Rasheed, M.</au><au>Barillé, R.</au><au>Megdiche, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2018</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>169</spage><epage>180</epage><pages>169-180</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The Na 2 WO 4 compound has been obtained by the conventional solid-state reaction and characterized by X -ay powder diffraction. The title material crystallizes in the cubic system with Fd-3m space group. The electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 586–679 K. Two semicircles are observed in impedance plot indicating the presence of two relaxation processes in the compound associated with the grain and grain boundary. The relaxation behavior of the grain and grain boundary of the Na 2 WO 4 are also obtained from the analyzed electrical modulus data. AC conductivity measured follows the power-law dependence σ AC ∼ω s typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process. The mechanism of conduction is probably due from the displacements of the Na+ ion in the tunnel-type cavities along [111] direction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-017-2193-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8792-5118</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2018, Vol.24 (1), p.169-180
issn 0947-7047
1862-0760
language eng
recordid cdi_hal_primary_oai_HAL_hal_02885130v1
source SpringerLink Journals
subjects Charge transport
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrical properties
Electrical resistivity
Electrochemistry
Energy Storage
Grain boundaries
Optical and Electronic Materials
Original Paper
Physics
Renewable and Green Energy
Sodium tungstate
Temperature dependence
title AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AC%20conductivity%20evolution%20in%20bulk%20and%20grain%20boundary%20response%20of%20sodium%20tungstate%20Na2WO4&rft.jtitle=Ionics&rft.au=Dkhilalli,%20F.&rft.date=2018&rft.volume=24&rft.issue=1&rft.spage=169&rft.epage=180&rft.pages=169-180&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-017-2193-8&rft_dat=%3Cproquest_hal_p%3E1983411474%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983411474&rft_id=info:pmid/&rfr_iscdi=true