Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration
•Definition of coastal eco-design.•Integration of eco-engineering in the design of coastal infrastructures.•Manipulating from micro- to macro-biological scales for artificial hard substrates. Eco-design aims to enhance eco-engineering practices of coastal infrastructure projects in support of ecolog...
Gespeichert in:
Veröffentlicht in: | Ecological engineering 2018-09, Vol.120, p.574-584 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | |
container_start_page | 574 |
container_title | Ecological engineering |
container_volume | 120 |
creator | Pioch, S. Relini, G. Souche, J.C. Stive, M.J.F. De Monbrison, D. Nassif, S. Simard, F. Allemand, D. Saussol, P. Spieler, R. Kilfoyle, K. |
description | •Definition of coastal eco-design.•Integration of eco-engineering in the design of coastal infrastructures.•Manipulating from micro- to macro-biological scales for artificial hard substrates.
Eco-design aims to enhance eco-engineering practices of coastal infrastructure projects in support of ecological functions before these projects are developed and implemented. The principle is to integrate eco-engineering concepts in the early phases of project design. Although ecological losses are inherent in any construction project, the goal of eco-design is to introduce environmental considerations upfront during technical design choices, and not just afterwards when evaluating the need for reduction or compensatory mitigation. It seeks to reduce the negative impacts of marine infrastructure by introducing a new reflexive civil engineering approach. It requires a valuation of nature with the aim of reducing impacts by incorporating intelligent design and habitat-centered construction. The principle advocated in this paper is to design coastal infrastructures, at micro- to macro-biological scales, using a combination of fine and large scale physical and chemical modifications to hard substrates, within the scope of civil engineering requirements. To this end, we provide a brief introduction to the factors involved in concrete-biota interactions and propose several recommendations as a basis to integrate ecology into civil engineering projects, specifically addressed to concrete. |
doi_str_mv | 10.1016/j.ecoleng.2018.05.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02884809v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925857418301976</els_id><sourcerecordid>2124117268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-5d958093eb3bee05511f80c962fee90ca9279f9320ce2d39519ec56ff0672c0d3</originalsourceid><addsrcrecordid>eNqFkUFv2yAYhtHUSUuz_YRJlnbqwd4HNrbZZaqitJmUaZf2jCj-cLAS6IBk6r8vbqJed4IPPe8D6CXkK4WKAm2_TxVqv0c3VgxoXwGvoG4-kAXtO1a2QrArsgDBeNnzrvlErmOcAKBjXCzItHY75bR1Y5ElZZZYhxjm2ZtCexWT2hfWmZB34ajTMWDxz6bdGz5gtKP7Ufz2pzlhgj8UB5vsqJL1rkg-JxOO4W38TD4atY_45bIuyePd-mG1Kbd_7n-tbrelbto2lXwQvAdR41P9hAicU2p60KJlBlGAVoJ1woiagUY21IJTgZq3xkDbMQ1DvSQ3Z-9O7eVzsAcVXqRXVm5ut3I-A9b3Tb7iRDP77cw-B__3iDHJyR-Dy8-TjLKG0o61fab4mdLBxxjQvGspyLkCOclLBXKuQAKXuYKc-3nOYf7uyWKQUVt0GgcbUCc5ePsfwyt47pLR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124117268</pqid></control><display><type>article</type><title>Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration</title><source>Elsevier ScienceDirect Journals</source><creator>Pioch, S. ; Relini, G. ; Souche, J.C. ; Stive, M.J.F. ; De Monbrison, D. ; Nassif, S. ; Simard, F. ; Allemand, D. ; Saussol, P. ; Spieler, R. ; Kilfoyle, K.</creator><creatorcontrib>Pioch, S. ; Relini, G. ; Souche, J.C. ; Stive, M.J.F. ; De Monbrison, D. ; Nassif, S. ; Simard, F. ; Allemand, D. ; Saussol, P. ; Spieler, R. ; Kilfoyle, K.</creatorcontrib><description>•Definition of coastal eco-design.•Integration of eco-engineering in the design of coastal infrastructures.•Manipulating from micro- to macro-biological scales for artificial hard substrates.
Eco-design aims to enhance eco-engineering practices of coastal infrastructure projects in support of ecological functions before these projects are developed and implemented. The principle is to integrate eco-engineering concepts in the early phases of project design. Although ecological losses are inherent in any construction project, the goal of eco-design is to introduce environmental considerations upfront during technical design choices, and not just afterwards when evaluating the need for reduction or compensatory mitigation. It seeks to reduce the negative impacts of marine infrastructure by introducing a new reflexive civil engineering approach. It requires a valuation of nature with the aim of reducing impacts by incorporating intelligent design and habitat-centered construction. The principle advocated in this paper is to design coastal infrastructures, at micro- to macro-biological scales, using a combination of fine and large scale physical and chemical modifications to hard substrates, within the scope of civil engineering requirements. To this end, we provide a brief introduction to the factors involved in concrete-biota interactions and propose several recommendations as a basis to integrate ecology into civil engineering projects, specifically addressed to concrete.</description><identifier>ISSN: 0925-8574</identifier><identifier>EISSN: 1872-6992</identifier><identifier>DOI: 10.1016/j.ecoleng.2018.05.034</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biota ; Civil engineering ; Coastal civil engineering ; Coastal ecology ; Coastal engineering ; Coasts ; Concrete ; Construction ; Design engineering ; Eco-design ; Eco-engineering ; Ecological function ; Ecological integration ; Ecological restoration ; Ecosystems ; Engineering Sciences ; Environmental impact assessment ; Infrastructure ; Interactions ; Marine engineering ; Mitigation ; Organic chemistry ; Project design ; Shorelines ; Substrates ; Sustainable design</subject><ispartof>Ecological engineering, 2018-09, Vol.120, p.574-584</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-5d958093eb3bee05511f80c962fee90ca9279f9320ce2d39519ec56ff0672c0d3</citedby><cites>FETCH-LOGICAL-c466t-5d958093eb3bee05511f80c962fee90ca9279f9320ce2d39519ec56ff0672c0d3</cites><orcidid>0000-0002-1624-3387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925857418301976$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02884809$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pioch, S.</creatorcontrib><creatorcontrib>Relini, G.</creatorcontrib><creatorcontrib>Souche, J.C.</creatorcontrib><creatorcontrib>Stive, M.J.F.</creatorcontrib><creatorcontrib>De Monbrison, D.</creatorcontrib><creatorcontrib>Nassif, S.</creatorcontrib><creatorcontrib>Simard, F.</creatorcontrib><creatorcontrib>Allemand, D.</creatorcontrib><creatorcontrib>Saussol, P.</creatorcontrib><creatorcontrib>Spieler, R.</creatorcontrib><creatorcontrib>Kilfoyle, K.</creatorcontrib><title>Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration</title><title>Ecological engineering</title><description>•Definition of coastal eco-design.•Integration of eco-engineering in the design of coastal infrastructures.•Manipulating from micro- to macro-biological scales for artificial hard substrates.
Eco-design aims to enhance eco-engineering practices of coastal infrastructure projects in support of ecological functions before these projects are developed and implemented. The principle is to integrate eco-engineering concepts in the early phases of project design. Although ecological losses are inherent in any construction project, the goal of eco-design is to introduce environmental considerations upfront during technical design choices, and not just afterwards when evaluating the need for reduction or compensatory mitigation. It seeks to reduce the negative impacts of marine infrastructure by introducing a new reflexive civil engineering approach. It requires a valuation of nature with the aim of reducing impacts by incorporating intelligent design and habitat-centered construction. The principle advocated in this paper is to design coastal infrastructures, at micro- to macro-biological scales, using a combination of fine and large scale physical and chemical modifications to hard substrates, within the scope of civil engineering requirements. To this end, we provide a brief introduction to the factors involved in concrete-biota interactions and propose several recommendations as a basis to integrate ecology into civil engineering projects, specifically addressed to concrete.</description><subject>Biota</subject><subject>Civil engineering</subject><subject>Coastal civil engineering</subject><subject>Coastal ecology</subject><subject>Coastal engineering</subject><subject>Coasts</subject><subject>Concrete</subject><subject>Construction</subject><subject>Design engineering</subject><subject>Eco-design</subject><subject>Eco-engineering</subject><subject>Ecological function</subject><subject>Ecological integration</subject><subject>Ecological restoration</subject><subject>Ecosystems</subject><subject>Engineering Sciences</subject><subject>Environmental impact assessment</subject><subject>Infrastructure</subject><subject>Interactions</subject><subject>Marine engineering</subject><subject>Mitigation</subject><subject>Organic chemistry</subject><subject>Project design</subject><subject>Shorelines</subject><subject>Substrates</subject><subject>Sustainable design</subject><issn>0925-8574</issn><issn>1872-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv2yAYhtHUSUuz_YRJlnbqwd4HNrbZZaqitJmUaZf2jCj-cLAS6IBk6r8vbqJed4IPPe8D6CXkK4WKAm2_TxVqv0c3VgxoXwGvoG4-kAXtO1a2QrArsgDBeNnzrvlErmOcAKBjXCzItHY75bR1Y5ElZZZYhxjm2ZtCexWT2hfWmZB34ajTMWDxz6bdGz5gtKP7Ufz2pzlhgj8UB5vsqJL1rkg-JxOO4W38TD4atY_45bIuyePd-mG1Kbd_7n-tbrelbto2lXwQvAdR41P9hAicU2p60KJlBlGAVoJ1woiagUY21IJTgZq3xkDbMQ1DvSQ3Z-9O7eVzsAcVXqRXVm5ut3I-A9b3Tb7iRDP77cw-B__3iDHJyR-Dy8-TjLKG0o61fab4mdLBxxjQvGspyLkCOclLBXKuQAKXuYKc-3nOYf7uyWKQUVt0GgcbUCc5ePsfwyt47pLR</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Pioch, S.</creator><creator>Relini, G.</creator><creator>Souche, J.C.</creator><creator>Stive, M.J.F.</creator><creator>De Monbrison, D.</creator><creator>Nassif, S.</creator><creator>Simard, F.</creator><creator>Allemand, D.</creator><creator>Saussol, P.</creator><creator>Spieler, R.</creator><creator>Kilfoyle, K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7SN</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1624-3387</orcidid></search><sort><creationdate>20180901</creationdate><title>Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration</title><author>Pioch, S. ; Relini, G. ; Souche, J.C. ; Stive, M.J.F. ; De Monbrison, D. ; Nassif, S. ; Simard, F. ; Allemand, D. ; Saussol, P. ; Spieler, R. ; Kilfoyle, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-5d958093eb3bee05511f80c962fee90ca9279f9320ce2d39519ec56ff0672c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biota</topic><topic>Civil engineering</topic><topic>Coastal civil engineering</topic><topic>Coastal ecology</topic><topic>Coastal engineering</topic><topic>Coasts</topic><topic>Concrete</topic><topic>Construction</topic><topic>Design engineering</topic><topic>Eco-design</topic><topic>Eco-engineering</topic><topic>Ecological function</topic><topic>Ecological integration</topic><topic>Ecological restoration</topic><topic>Ecosystems</topic><topic>Engineering Sciences</topic><topic>Environmental impact assessment</topic><topic>Infrastructure</topic><topic>Interactions</topic><topic>Marine engineering</topic><topic>Mitigation</topic><topic>Organic chemistry</topic><topic>Project design</topic><topic>Shorelines</topic><topic>Substrates</topic><topic>Sustainable design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pioch, S.</creatorcontrib><creatorcontrib>Relini, G.</creatorcontrib><creatorcontrib>Souche, J.C.</creatorcontrib><creatorcontrib>Stive, M.J.F.</creatorcontrib><creatorcontrib>De Monbrison, D.</creatorcontrib><creatorcontrib>Nassif, S.</creatorcontrib><creatorcontrib>Simard, F.</creatorcontrib><creatorcontrib>Allemand, D.</creatorcontrib><creatorcontrib>Saussol, P.</creatorcontrib><creatorcontrib>Spieler, R.</creatorcontrib><creatorcontrib>Kilfoyle, K.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ecological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pioch, S.</au><au>Relini, G.</au><au>Souche, J.C.</au><au>Stive, M.J.F.</au><au>De Monbrison, D.</au><au>Nassif, S.</au><au>Simard, F.</au><au>Allemand, D.</au><au>Saussol, P.</au><au>Spieler, R.</au><au>Kilfoyle, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration</atitle><jtitle>Ecological engineering</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>120</volume><spage>574</spage><epage>584</epage><pages>574-584</pages><issn>0925-8574</issn><eissn>1872-6992</eissn><abstract>•Definition of coastal eco-design.•Integration of eco-engineering in the design of coastal infrastructures.•Manipulating from micro- to macro-biological scales for artificial hard substrates.
Eco-design aims to enhance eco-engineering practices of coastal infrastructure projects in support of ecological functions before these projects are developed and implemented. The principle is to integrate eco-engineering concepts in the early phases of project design. Although ecological losses are inherent in any construction project, the goal of eco-design is to introduce environmental considerations upfront during technical design choices, and not just afterwards when evaluating the need for reduction or compensatory mitigation. It seeks to reduce the negative impacts of marine infrastructure by introducing a new reflexive civil engineering approach. It requires a valuation of nature with the aim of reducing impacts by incorporating intelligent design and habitat-centered construction. The principle advocated in this paper is to design coastal infrastructures, at micro- to macro-biological scales, using a combination of fine and large scale physical and chemical modifications to hard substrates, within the scope of civil engineering requirements. To this end, we provide a brief introduction to the factors involved in concrete-biota interactions and propose several recommendations as a basis to integrate ecology into civil engineering projects, specifically addressed to concrete.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecoleng.2018.05.034</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1624-3387</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8574 |
ispartof | Ecological engineering, 2018-09, Vol.120, p.574-584 |
issn | 0925-8574 1872-6992 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02884809v1 |
source | Elsevier ScienceDirect Journals |
subjects | Biota Civil engineering Coastal civil engineering Coastal ecology Coastal engineering Coasts Concrete Construction Design engineering Eco-design Eco-engineering Ecological function Ecological integration Ecological restoration Ecosystems Engineering Sciences Environmental impact assessment Infrastructure Interactions Marine engineering Mitigation Organic chemistry Project design Shorelines Substrates Sustainable design |
title | Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20eco-engineering%20of%20coastal%20infrastructure%20with%20eco-design:%20Moving%20from%20mitigation%20to%20integration&rft.jtitle=Ecological%20engineering&rft.au=Pioch,%20S.&rft.date=2018-09-01&rft.volume=120&rft.spage=574&rft.epage=584&rft.pages=574-584&rft.issn=0925-8574&rft.eissn=1872-6992&rft_id=info:doi/10.1016/j.ecoleng.2018.05.034&rft_dat=%3Cproquest_hal_p%3E2124117268%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124117268&rft_id=info:pmid/&rft_els_id=S0925857418301976&rfr_iscdi=true |