Mass-resolved electronic circular dichroism ion spectroscopy

Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly et al. now r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-06, Vol.368 (6498), p.1465-1468
Hauptverfasser: Daly, Steven, Rosu, Frédéric, Gabelica, Valérie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1468
container_issue 6498
container_start_page 1465
container_title Science (American Association for the Advancement of Science)
container_volume 368
creator Daly, Steven
Rosu, Frédéric
Gabelica, Valérie
description Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly et al. now report gas-phase circular dichroism spectra of DNA oligonucleotides based on detection of photodetached electrons rather than transmitted light (see the Perspective by Barran). The salient spectral features matched those in solution. Pairing the technique with mass spectrometry enables prior mass selection of particular molecules for analysis. Science , this issue p. 1465 ; see also p. 1426 Electron ejection by left versus right circularly polarized light tracks configurations of gas-phase DNA oligonucleotides. DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.
doi_str_mv 10.1126/science.abb1822
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02882085v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417520271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a0a53ff838e7f3ddf805bebc86606d9867d286e633ad50395bbe75ffff94b4be3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKtnrwte9LDtJNl8LHgpolaoeNFzSLJZmrLdrEm30P_eXVs8OJeBeT8e8x5CtxhmGBM-T9a71rqZNgZLQs7QBEPJ8pIAPUcTAMpzCYJdoquUNgCDVtIJenzXKeXRpdDsXZW5xtldDK23mfXR9o2OWeXtOgaftpkPbZa6XyLZ0B2u0UWtm-RuTnuKvl6eP5-W-erj9e1pscptAWSXa9CM1rWk0omaVlUtgRlnrOQceFVKLioiueOU6ooBLZkxTrB6mLIwhXF0ih6OvmvdqC76rY4HFbRXy8VKjTcgUhKQbI8H9v7IdjF89y7t1NYn65pGty70SZECS0yp4GJA7_6hm9DHdkgyUoIRIGI0nB8pO6RO0dV_H2BQY_Pq1Lw6NU9_AODleJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417520271</pqid></control><display><type>article</type><title>Mass-resolved electronic circular dichroism ion spectroscopy</title><source>American Association for the Advancement of Science</source><creator>Daly, Steven ; Rosu, Frédéric ; Gabelica, Valérie</creator><creatorcontrib>Daly, Steven ; Rosu, Frédéric ; Gabelica, Valérie</creatorcontrib><description>Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly et al. now report gas-phase circular dichroism spectra of DNA oligonucleotides based on detection of photodetached electrons rather than transmitted light (see the Perspective by Barran). The salient spectral features matched those in solution. Pairing the technique with mass spectrometry enables prior mass selection of particular molecules for analysis. Science , this issue p. 1465 ; see also p. 1426 Electron ejection by left versus right circularly polarized light tracks configurations of gas-phase DNA oligonucleotides. DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb1822</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Analytical chemistry ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Physics ; Biophysics ; Chemical Physics ; Chemical Sciences ; Circular dichroism ; Circular polarization ; Data interpretation ; Deoxyribonucleic acid ; Dichroism ; DNA ; Guanine ; Helices ; Ions ; Life Sciences ; Light ; Mass spectrometry ; Mass spectroscopy ; Negative ions ; Oligonucleotides ; Optical Parametric Oscillators ; or physical chemistry ; Parametric amplifiers ; Photodetachment ; Physics ; Polarized light ; Scientific imaging ; Spectra ; Spectroscopy ; Structural analysis ; Structural Analysis (Linguistics) ; Structural Analysis (Science) ; Structural Biology ; Theoretical and ; Topology ; Vapor phases</subject><ispartof>Science (American Association for the Advancement of Science), 2020-06, Vol.368 (6498), p.1465-1468</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a0a53ff838e7f3ddf805bebc86606d9867d286e633ad50395bbe75ffff94b4be3</citedby><cites>FETCH-LOGICAL-c402t-a0a53ff838e7f3ddf805bebc86606d9867d286e633ad50395bbe75ffff94b4be3</cites><orcidid>0000-0001-9496-0165 ; 0000-0002-3268-8247 ; 0000-0003-3674-7539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2882,2883,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02882085$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Daly, Steven</creatorcontrib><creatorcontrib>Rosu, Frédéric</creatorcontrib><creatorcontrib>Gabelica, Valérie</creatorcontrib><title>Mass-resolved electronic circular dichroism ion spectroscopy</title><title>Science (American Association for the Advancement of Science)</title><description>Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly et al. now report gas-phase circular dichroism spectra of DNA oligonucleotides based on detection of photodetached electrons rather than transmitted light (see the Perspective by Barran). The salient spectral features matched those in solution. Pairing the technique with mass spectrometry enables prior mass selection of particular molecules for analysis. Science , this issue p. 1465 ; see also p. 1426 Electron ejection by left versus right circularly polarized light tracks configurations of gas-phase DNA oligonucleotides. DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.</description><subject>Analytical chemistry</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Physics</subject><subject>Biophysics</subject><subject>Chemical Physics</subject><subject>Chemical Sciences</subject><subject>Circular dichroism</subject><subject>Circular polarization</subject><subject>Data interpretation</subject><subject>Deoxyribonucleic acid</subject><subject>Dichroism</subject><subject>DNA</subject><subject>Guanine</subject><subject>Helices</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Negative ions</subject><subject>Oligonucleotides</subject><subject>Optical Parametric Oscillators</subject><subject>or physical chemistry</subject><subject>Parametric amplifiers</subject><subject>Photodetachment</subject><subject>Physics</subject><subject>Polarized light</subject><subject>Scientific imaging</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Structural analysis</subject><subject>Structural Analysis (Linguistics)</subject><subject>Structural Analysis (Science)</subject><subject>Structural Biology</subject><subject>Theoretical and</subject><subject>Topology</subject><subject>Vapor phases</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEQxYMoWKtnrwte9LDtJNl8LHgpolaoeNFzSLJZmrLdrEm30P_eXVs8OJeBeT8e8x5CtxhmGBM-T9a71rqZNgZLQs7QBEPJ8pIAPUcTAMpzCYJdoquUNgCDVtIJenzXKeXRpdDsXZW5xtldDK23mfXR9o2OWeXtOgaftpkPbZa6XyLZ0B2u0UWtm-RuTnuKvl6eP5-W-erj9e1pscptAWSXa9CM1rWk0omaVlUtgRlnrOQceFVKLioiueOU6ooBLZkxTrB6mLIwhXF0ih6OvmvdqC76rY4HFbRXy8VKjTcgUhKQbI8H9v7IdjF89y7t1NYn65pGty70SZECS0yp4GJA7_6hm9DHdkgyUoIRIGI0nB8pO6RO0dV_H2BQY_Pq1Lw6NU9_AODleJw</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Daly, Steven</creator><creator>Rosu, Frédéric</creator><creator>Gabelica, Valérie</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9496-0165</orcidid><orcidid>https://orcid.org/0000-0002-3268-8247</orcidid><orcidid>https://orcid.org/0000-0003-3674-7539</orcidid></search><sort><creationdate>20200626</creationdate><title>Mass-resolved electronic circular dichroism ion spectroscopy</title><author>Daly, Steven ; Rosu, Frédéric ; Gabelica, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a0a53ff838e7f3ddf805bebc86606d9867d286e633ad50395bbe75ffff94b4be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Physics</topic><topic>Biophysics</topic><topic>Chemical Physics</topic><topic>Chemical Sciences</topic><topic>Circular dichroism</topic><topic>Circular polarization</topic><topic>Data interpretation</topic><topic>Deoxyribonucleic acid</topic><topic>Dichroism</topic><topic>DNA</topic><topic>Guanine</topic><topic>Helices</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Negative ions</topic><topic>Oligonucleotides</topic><topic>Optical Parametric Oscillators</topic><topic>or physical chemistry</topic><topic>Parametric amplifiers</topic><topic>Photodetachment</topic><topic>Physics</topic><topic>Polarized light</topic><topic>Scientific imaging</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Structural analysis</topic><topic>Structural Analysis (Linguistics)</topic><topic>Structural Analysis (Science)</topic><topic>Structural Biology</topic><topic>Theoretical and</topic><topic>Topology</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daly, Steven</creatorcontrib><creatorcontrib>Rosu, Frédéric</creatorcontrib><creatorcontrib>Gabelica, Valérie</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daly, Steven</au><au>Rosu, Frédéric</au><au>Gabelica, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass-resolved electronic circular dichroism ion spectroscopy</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>368</volume><issue>6498</issue><spage>1465</spage><epage>1468</epage><pages>1465-1468</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly et al. now report gas-phase circular dichroism spectra of DNA oligonucleotides based on detection of photodetached electrons rather than transmitted light (see the Perspective by Barran). The salient spectral features matched those in solution. Pairing the technique with mass spectrometry enables prior mass selection of particular molecules for analysis. Science , this issue p. 1465 ; see also p. 1426 Electron ejection by left versus right circularly polarized light tracks configurations of gas-phase DNA oligonucleotides. DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abb1822</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9496-0165</orcidid><orcidid>https://orcid.org/0000-0002-3268-8247</orcidid><orcidid>https://orcid.org/0000-0003-3674-7539</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-06, Vol.368 (6498), p.1465-1468
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_02882085v1
source American Association for the Advancement of Science
subjects Analytical chemistry
Biochemistry
Biochemistry, Molecular Biology
Biological Physics
Biophysics
Chemical Physics
Chemical Sciences
Circular dichroism
Circular polarization
Data interpretation
Deoxyribonucleic acid
Dichroism
DNA
Guanine
Helices
Ions
Life Sciences
Light
Mass spectrometry
Mass spectroscopy
Negative ions
Oligonucleotides
Optical Parametric Oscillators
or physical chemistry
Parametric amplifiers
Photodetachment
Physics
Polarized light
Scientific imaging
Spectra
Spectroscopy
Structural analysis
Structural Analysis (Linguistics)
Structural Analysis (Science)
Structural Biology
Theoretical and
Topology
Vapor phases
title Mass-resolved electronic circular dichroism ion spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass-resolved%20electronic%20circular%20dichroism%20ion%20spectroscopy&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Daly,%20Steven&rft.date=2020-06-26&rft.volume=368&rft.issue=6498&rft.spage=1465&rft.epage=1468&rft.pages=1465-1468&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb1822&rft_dat=%3Cproquest_hal_p%3E2417520271%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417520271&rft_id=info:pmid/&rfr_iscdi=true