Mass-resolved electronic circular dichroism ion spectroscopy
Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly et al. now r...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-06, Vol.368 (6498), p.1465-1468 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1468 |
---|---|
container_issue | 6498 |
container_start_page | 1465 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 368 |
creator | Daly, Steven Rosu, Frédéric Gabelica, Valérie |
description | Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly
et al.
now report gas-phase circular dichroism spectra of DNA oligonucleotides based on detection of photodetached electrons rather than transmitted light (see the Perspective by Barran). The salient spectral features matched those in solution. Pairing the technique with mass spectrometry enables prior mass selection of particular molecules for analysis.
Science
, this issue p.
1465
; see also p.
1426
Electron ejection by left versus right circularly polarized light tracks configurations of gas-phase DNA oligonucleotides.
DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis. |
doi_str_mv | 10.1126/science.abb1822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02882085v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417520271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a0a53ff838e7f3ddf805bebc86606d9867d286e633ad50395bbe75ffff94b4be3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKtnrwte9LDtJNl8LHgpolaoeNFzSLJZmrLdrEm30P_eXVs8OJeBeT8e8x5CtxhmGBM-T9a71rqZNgZLQs7QBEPJ8pIAPUcTAMpzCYJdoquUNgCDVtIJenzXKeXRpdDsXZW5xtldDK23mfXR9o2OWeXtOgaftpkPbZa6XyLZ0B2u0UWtm-RuTnuKvl6eP5-W-erj9e1pscptAWSXa9CM1rWk0omaVlUtgRlnrOQceFVKLioiueOU6ooBLZkxTrB6mLIwhXF0ih6OvmvdqC76rY4HFbRXy8VKjTcgUhKQbI8H9v7IdjF89y7t1NYn65pGty70SZECS0yp4GJA7_6hm9DHdkgyUoIRIGI0nB8pO6RO0dV_H2BQY_Pq1Lw6NU9_AODleJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417520271</pqid></control><display><type>article</type><title>Mass-resolved electronic circular dichroism ion spectroscopy</title><source>American Association for the Advancement of Science</source><creator>Daly, Steven ; Rosu, Frédéric ; Gabelica, Valérie</creator><creatorcontrib>Daly, Steven ; Rosu, Frédéric ; Gabelica, Valérie</creatorcontrib><description>Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly
et al.
now report gas-phase circular dichroism spectra of DNA oligonucleotides based on detection of photodetached electrons rather than transmitted light (see the Perspective by Barran). The salient spectral features matched those in solution. Pairing the technique with mass spectrometry enables prior mass selection of particular molecules for analysis.
Science
, this issue p.
1465
; see also p.
1426
Electron ejection by left versus right circularly polarized light tracks configurations of gas-phase DNA oligonucleotides.
DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb1822</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Analytical chemistry ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Physics ; Biophysics ; Chemical Physics ; Chemical Sciences ; Circular dichroism ; Circular polarization ; Data interpretation ; Deoxyribonucleic acid ; Dichroism ; DNA ; Guanine ; Helices ; Ions ; Life Sciences ; Light ; Mass spectrometry ; Mass spectroscopy ; Negative ions ; Oligonucleotides ; Optical Parametric Oscillators ; or physical chemistry ; Parametric amplifiers ; Photodetachment ; Physics ; Polarized light ; Scientific imaging ; Spectra ; Spectroscopy ; Structural analysis ; Structural Analysis (Linguistics) ; Structural Analysis (Science) ; Structural Biology ; Theoretical and ; Topology ; Vapor phases</subject><ispartof>Science (American Association for the Advancement of Science), 2020-06, Vol.368 (6498), p.1465-1468</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a0a53ff838e7f3ddf805bebc86606d9867d286e633ad50395bbe75ffff94b4be3</citedby><cites>FETCH-LOGICAL-c402t-a0a53ff838e7f3ddf805bebc86606d9867d286e633ad50395bbe75ffff94b4be3</cites><orcidid>0000-0001-9496-0165 ; 0000-0002-3268-8247 ; 0000-0003-3674-7539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2882,2883,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02882085$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Daly, Steven</creatorcontrib><creatorcontrib>Rosu, Frédéric</creatorcontrib><creatorcontrib>Gabelica, Valérie</creatorcontrib><title>Mass-resolved electronic circular dichroism ion spectroscopy</title><title>Science (American Association for the Advancement of Science)</title><description>Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly
et al.
now report gas-phase circular dichroism spectra of DNA oligonucleotides based on detection of photodetached electrons rather than transmitted light (see the Perspective by Barran). The salient spectral features matched those in solution. Pairing the technique with mass spectrometry enables prior mass selection of particular molecules for analysis.
Science
, this issue p.
1465
; see also p.
1426
Electron ejection by left versus right circularly polarized light tracks configurations of gas-phase DNA oligonucleotides.
DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.</description><subject>Analytical chemistry</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Physics</subject><subject>Biophysics</subject><subject>Chemical Physics</subject><subject>Chemical Sciences</subject><subject>Circular dichroism</subject><subject>Circular polarization</subject><subject>Data interpretation</subject><subject>Deoxyribonucleic acid</subject><subject>Dichroism</subject><subject>DNA</subject><subject>Guanine</subject><subject>Helices</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Negative ions</subject><subject>Oligonucleotides</subject><subject>Optical Parametric Oscillators</subject><subject>or physical chemistry</subject><subject>Parametric amplifiers</subject><subject>Photodetachment</subject><subject>Physics</subject><subject>Polarized light</subject><subject>Scientific imaging</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Structural analysis</subject><subject>Structural Analysis (Linguistics)</subject><subject>Structural Analysis (Science)</subject><subject>Structural Biology</subject><subject>Theoretical and</subject><subject>Topology</subject><subject>Vapor phases</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEQxYMoWKtnrwte9LDtJNl8LHgpolaoeNFzSLJZmrLdrEm30P_eXVs8OJeBeT8e8x5CtxhmGBM-T9a71rqZNgZLQs7QBEPJ8pIAPUcTAMpzCYJdoquUNgCDVtIJenzXKeXRpdDsXZW5xtldDK23mfXR9o2OWeXtOgaftpkPbZa6XyLZ0B2u0UWtm-RuTnuKvl6eP5-W-erj9e1pscptAWSXa9CM1rWk0omaVlUtgRlnrOQceFVKLioiueOU6ooBLZkxTrB6mLIwhXF0ih6OvmvdqC76rY4HFbRXy8VKjTcgUhKQbI8H9v7IdjF89y7t1NYn65pGty70SZECS0yp4GJA7_6hm9DHdkgyUoIRIGI0nB8pO6RO0dV_H2BQY_Pq1Lw6NU9_AODleJw</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Daly, Steven</creator><creator>Rosu, Frédéric</creator><creator>Gabelica, Valérie</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9496-0165</orcidid><orcidid>https://orcid.org/0000-0002-3268-8247</orcidid><orcidid>https://orcid.org/0000-0003-3674-7539</orcidid></search><sort><creationdate>20200626</creationdate><title>Mass-resolved electronic circular dichroism ion spectroscopy</title><author>Daly, Steven ; Rosu, Frédéric ; Gabelica, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a0a53ff838e7f3ddf805bebc86606d9867d286e633ad50395bbe75ffff94b4be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Physics</topic><topic>Biophysics</topic><topic>Chemical Physics</topic><topic>Chemical Sciences</topic><topic>Circular dichroism</topic><topic>Circular polarization</topic><topic>Data interpretation</topic><topic>Deoxyribonucleic acid</topic><topic>Dichroism</topic><topic>DNA</topic><topic>Guanine</topic><topic>Helices</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Negative ions</topic><topic>Oligonucleotides</topic><topic>Optical Parametric Oscillators</topic><topic>or physical chemistry</topic><topic>Parametric amplifiers</topic><topic>Photodetachment</topic><topic>Physics</topic><topic>Polarized light</topic><topic>Scientific imaging</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Structural analysis</topic><topic>Structural Analysis (Linguistics)</topic><topic>Structural Analysis (Science)</topic><topic>Structural Biology</topic><topic>Theoretical and</topic><topic>Topology</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daly, Steven</creatorcontrib><creatorcontrib>Rosu, Frédéric</creatorcontrib><creatorcontrib>Gabelica, Valérie</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daly, Steven</au><au>Rosu, Frédéric</au><au>Gabelica, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass-resolved electronic circular dichroism ion spectroscopy</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>368</volume><issue>6498</issue><spage>1465</spage><epage>1468</epage><pages>1465-1468</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Circular dichroism spectroscopy is widely used to distinguish between nonidentical mirror-image molecules. The technique relies on differential absorption of left versus right circularly polarized light and therefore tends to require solution-phase samples for adequate sensitivity. Daly
et al.
now report gas-phase circular dichroism spectra of DNA oligonucleotides based on detection of photodetached electrons rather than transmitted light (see the Perspective by Barran). The salient spectral features matched those in solution. Pairing the technique with mass spectrometry enables prior mass selection of particular molecules for analysis.
Science
, this issue p.
1465
; see also p.
1426
Electron ejection by left versus right circularly polarized light tracks configurations of gas-phase DNA oligonucleotides.
DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abb1822</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9496-0165</orcidid><orcidid>https://orcid.org/0000-0002-3268-8247</orcidid><orcidid>https://orcid.org/0000-0003-3674-7539</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-06, Vol.368 (6498), p.1465-1468 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02882085v1 |
source | American Association for the Advancement of Science |
subjects | Analytical chemistry Biochemistry Biochemistry, Molecular Biology Biological Physics Biophysics Chemical Physics Chemical Sciences Circular dichroism Circular polarization Data interpretation Deoxyribonucleic acid Dichroism DNA Guanine Helices Ions Life Sciences Light Mass spectrometry Mass spectroscopy Negative ions Oligonucleotides Optical Parametric Oscillators or physical chemistry Parametric amplifiers Photodetachment Physics Polarized light Scientific imaging Spectra Spectroscopy Structural analysis Structural Analysis (Linguistics) Structural Analysis (Science) Structural Biology Theoretical and Topology Vapor phases |
title | Mass-resolved electronic circular dichroism ion spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass-resolved%20electronic%20circular%20dichroism%20ion%20spectroscopy&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Daly,%20Steven&rft.date=2020-06-26&rft.volume=368&rft.issue=6498&rft.spage=1465&rft.epage=1468&rft.pages=1465-1468&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb1822&rft_dat=%3Cproquest_hal_p%3E2417520271%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417520271&rft_id=info:pmid/&rfr_iscdi=true |