Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data
A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution an...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2018-10, Vol.123 (20), p.11,748-11,765 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11,765 |
---|---|
container_issue | 20 |
container_start_page | 11,748 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 123 |
creator | Sato, Yousuke Takigawa, Masayuki Sekiyama, Tsuyoshi Thomas Kajino, Mizuo Terada, Hiroaki Nagai, Haruyasu Kondo, Hiroaki Uchida, Junya Goto, Daisuke Quélo, Denis Mathieu, Anne Quérel, Arnaud Fang, Sheng Morino, Yu Schoenberg, Pontus Grahn, Håkan Brännström, Niklas Hirao, Shigekazu Tsuruta, Haruo Yamazawa, Hiromi Nakajima, Teruyuki |
description | A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric 137Cs events observed by measurements, and the figure of merit in space for the total deposition of 137Cs exceeded 80. The lower score of the atmospheric 137Cs than that of the deposition originated from the difference in timing between observed and simulated atmospheric 137Cs. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric 137Cs events. The results further revealed that differences in 137Cs concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric 137Cs, and those with strong diffusion succeeded in capturing the high 137Cs concentrations observed; however, they also tended to overestimate the concentrations.
Key Points
A model intercomparison of the atmospheric dispersion of 137Cs using identical input data was conducted
Deposition and diffusion were key processes responsible for the differences among the models when the meteorological field was reproduced
A score‐weighted ensemble‐mean distribution of the atmospheric 137Cs concentration was created |
doi_str_mv | 10.1029/2018JD029144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02881795v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149049163</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2107-feecc703120f840d6cae9bdd32c0406cca1d4d9f36ef393c99e6cfed449fbf043</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjVCRQJRbf4AlTj1sO469SdzbstuFRcuHaCtxs4w9VgxJHGyniB_R_1yvtkKdw8zTzNN7M5qi-EThC4VSfC2BNlerjCjnB8VxSSsxa4SoPrzj-uGoOI3xCXI0wPicHxd_rr3BjmyGhEH7flTBRT8Qb8ki9T6OLQanCWX1MpJ18D1JLZL19DzF1vWKrJRzunXkZtIdqkDu_Cvm3KkhkYXWzuCQvpEfrp86lZwfIjlXEQ3JFpvdzGm1Mx-nlKWS-lgcWtVFPP1XT4pf6-8_l5ez7e3FZrnYztqSQj2ziFrXwGgJtuFgKq1QPBrDSg0cKq0VNdwIyyq0TDAtBFbaouFc2EcLnJ0Un_e6rerkGPIl4U165eTlYit3PSibhtZi_ptm7tmeOwb_MmFM8slPYcjryZJyAVzQimUW27NeXYdv75oU5O458v_nyKuL-9V8DlCzv2p9g_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149049163</pqid></control><display><type>article</type><title>Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sato, Yousuke ; Takigawa, Masayuki ; Sekiyama, Tsuyoshi Thomas ; Kajino, Mizuo ; Terada, Hiroaki ; Nagai, Haruyasu ; Kondo, Hiroaki ; Uchida, Junya ; Goto, Daisuke ; Quélo, Denis ; Mathieu, Anne ; Quérel, Arnaud ; Fang, Sheng ; Morino, Yu ; Schoenberg, Pontus ; Grahn, Håkan ; Brännström, Niklas ; Hirao, Shigekazu ; Tsuruta, Haruo ; Yamazawa, Hiromi ; Nakajima, Teruyuki</creator><creatorcontrib>Sato, Yousuke ; Takigawa, Masayuki ; Sekiyama, Tsuyoshi Thomas ; Kajino, Mizuo ; Terada, Hiroaki ; Nagai, Haruyasu ; Kondo, Hiroaki ; Uchida, Junya ; Goto, Daisuke ; Quélo, Denis ; Mathieu, Anne ; Quérel, Arnaud ; Fang, Sheng ; Morino, Yu ; Schoenberg, Pontus ; Grahn, Håkan ; Brännström, Niklas ; Hirao, Shigekazu ; Tsuruta, Haruo ; Yamazawa, Hiromi ; Nakajima, Teruyuki</creatorcontrib><description>A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric 137Cs events observed by measurements, and the figure of merit in space for the total deposition of 137Cs exceeded 80. The lower score of the atmospheric 137Cs than that of the deposition originated from the difference in timing between observed and simulated atmospheric 137Cs. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric 137Cs events. The results further revealed that differences in 137Cs concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric 137Cs, and those with strong diffusion succeeded in capturing the high 137Cs concentrations observed; however, they also tended to overestimate the concentrations.
Key Points
A model intercomparison of the atmospheric dispersion of 137Cs using identical input data was conducted
Deposition and diffusion were key processes responsible for the differences among the models when the meteorological field was reproduced
A score‐weighted ensemble‐mean distribution of the atmospheric 137Cs concentration was created</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD029144</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric and Oceanic Physics ; Atmospheric diffusion ; Atmospheric dispersion ; Atmospheric models ; Caesium ; Caesium 137 ; Cesium ; Cesium 137 ; Cesium isotopes ; Cesium radioisotopes ; Computer simulation ; Deposition ; deposition process ; Diffusion ; Diffusion processes ; Dye dispersion ; Emission ; Emission inventories ; Environmental Sciences ; Figure of merit ; Fluxes ; Geophysics ; Industrial plant emissions ; Intercomparison ; Meteorological data ; model intercomparison ; Nuclear accidents ; Nuclear accidents & safety ; Nuclear energy ; Nuclear power plants ; Physics ; Pollution dispersion ; Resolution</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-10, Vol.123 (20), p.11,748-11,765</ispartof><rights>2018. The Authors.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2975-3738 ; 0000-0002-8936-3101 ; 0000-0002-7201-2540 ; 0000-0001-9634-1595 ; 0000-0002-8340-4312 ; 0000-0002-6857-3783 ; 0000-0003-3949-6202 ; 0000-0002-1843-4291 ; 0000-0002-3578-1332 ; 0000-0002-7986-165X ; 0000-0002-3988-0565 ; 0000-0003-3344-3986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JD029144$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JD029144$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02881795$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, Yousuke</creatorcontrib><creatorcontrib>Takigawa, Masayuki</creatorcontrib><creatorcontrib>Sekiyama, Tsuyoshi Thomas</creatorcontrib><creatorcontrib>Kajino, Mizuo</creatorcontrib><creatorcontrib>Terada, Hiroaki</creatorcontrib><creatorcontrib>Nagai, Haruyasu</creatorcontrib><creatorcontrib>Kondo, Hiroaki</creatorcontrib><creatorcontrib>Uchida, Junya</creatorcontrib><creatorcontrib>Goto, Daisuke</creatorcontrib><creatorcontrib>Quélo, Denis</creatorcontrib><creatorcontrib>Mathieu, Anne</creatorcontrib><creatorcontrib>Quérel, Arnaud</creatorcontrib><creatorcontrib>Fang, Sheng</creatorcontrib><creatorcontrib>Morino, Yu</creatorcontrib><creatorcontrib>Schoenberg, Pontus</creatorcontrib><creatorcontrib>Grahn, Håkan</creatorcontrib><creatorcontrib>Brännström, Niklas</creatorcontrib><creatorcontrib>Hirao, Shigekazu</creatorcontrib><creatorcontrib>Tsuruta, Haruo</creatorcontrib><creatorcontrib>Yamazawa, Hiromi</creatorcontrib><creatorcontrib>Nakajima, Teruyuki</creatorcontrib><title>Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data</title><title>Journal of geophysical research. Atmospheres</title><description>A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric 137Cs events observed by measurements, and the figure of merit in space for the total deposition of 137Cs exceeded 80. The lower score of the atmospheric 137Cs than that of the deposition originated from the difference in timing between observed and simulated atmospheric 137Cs. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric 137Cs events. The results further revealed that differences in 137Cs concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric 137Cs, and those with strong diffusion succeeded in capturing the high 137Cs concentrations observed; however, they also tended to overestimate the concentrations.
Key Points
A model intercomparison of the atmospheric dispersion of 137Cs using identical input data was conducted
Deposition and diffusion were key processes responsible for the differences among the models when the meteorological field was reproduced
A score‐weighted ensemble‐mean distribution of the atmospheric 137Cs concentration was created</description><subject>Atmospheric and Oceanic Physics</subject><subject>Atmospheric diffusion</subject><subject>Atmospheric dispersion</subject><subject>Atmospheric models</subject><subject>Caesium</subject><subject>Caesium 137</subject><subject>Cesium</subject><subject>Cesium 137</subject><subject>Cesium isotopes</subject><subject>Cesium radioisotopes</subject><subject>Computer simulation</subject><subject>Deposition</subject><subject>deposition process</subject><subject>Diffusion</subject><subject>Diffusion processes</subject><subject>Dye dispersion</subject><subject>Emission</subject><subject>Emission inventories</subject><subject>Environmental Sciences</subject><subject>Figure of merit</subject><subject>Fluxes</subject><subject>Geophysics</subject><subject>Industrial plant emissions</subject><subject>Intercomparison</subject><subject>Meteorological data</subject><subject>model intercomparison</subject><subject>Nuclear accidents</subject><subject>Nuclear accidents & safety</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Physics</subject><subject>Pollution dispersion</subject><subject>Resolution</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNUU1P3DAQjVCRQJRbf4AlTj1sO469SdzbstuFRcuHaCtxs4w9VgxJHGyniB_R_1yvtkKdw8zTzNN7M5qi-EThC4VSfC2BNlerjCjnB8VxSSsxa4SoPrzj-uGoOI3xCXI0wPicHxd_rr3BjmyGhEH7flTBRT8Qb8ki9T6OLQanCWX1MpJ18D1JLZL19DzF1vWKrJRzunXkZtIdqkDu_Cvm3KkhkYXWzuCQvpEfrp86lZwfIjlXEQ3JFpvdzGm1Mx-nlKWS-lgcWtVFPP1XT4pf6-8_l5ez7e3FZrnYztqSQj2ziFrXwGgJtuFgKq1QPBrDSg0cKq0VNdwIyyq0TDAtBFbaouFc2EcLnJ0Un_e6rerkGPIl4U165eTlYit3PSibhtZi_ptm7tmeOwb_MmFM8slPYcjryZJyAVzQimUW27NeXYdv75oU5O458v_nyKuL-9V8DlCzv2p9g_I</recordid><startdate>20181027</startdate><enddate>20181027</enddate><creator>Sato, Yousuke</creator><creator>Takigawa, Masayuki</creator><creator>Sekiyama, Tsuyoshi Thomas</creator><creator>Kajino, Mizuo</creator><creator>Terada, Hiroaki</creator><creator>Nagai, Haruyasu</creator><creator>Kondo, Hiroaki</creator><creator>Uchida, Junya</creator><creator>Goto, Daisuke</creator><creator>Quélo, Denis</creator><creator>Mathieu, Anne</creator><creator>Quérel, Arnaud</creator><creator>Fang, Sheng</creator><creator>Morino, Yu</creator><creator>Schoenberg, Pontus</creator><creator>Grahn, Håkan</creator><creator>Brännström, Niklas</creator><creator>Hirao, Shigekazu</creator><creator>Tsuruta, Haruo</creator><creator>Yamazawa, Hiromi</creator><creator>Nakajima, Teruyuki</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2975-3738</orcidid><orcidid>https://orcid.org/0000-0002-8936-3101</orcidid><orcidid>https://orcid.org/0000-0002-7201-2540</orcidid><orcidid>https://orcid.org/0000-0001-9634-1595</orcidid><orcidid>https://orcid.org/0000-0002-8340-4312</orcidid><orcidid>https://orcid.org/0000-0002-6857-3783</orcidid><orcidid>https://orcid.org/0000-0003-3949-6202</orcidid><orcidid>https://orcid.org/0000-0002-1843-4291</orcidid><orcidid>https://orcid.org/0000-0002-3578-1332</orcidid><orcidid>https://orcid.org/0000-0002-7986-165X</orcidid><orcidid>https://orcid.org/0000-0002-3988-0565</orcidid><orcidid>https://orcid.org/0000-0003-3344-3986</orcidid></search><sort><creationdate>20181027</creationdate><title>Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data</title><author>Sato, Yousuke ; Takigawa, Masayuki ; Sekiyama, Tsuyoshi Thomas ; Kajino, Mizuo ; Terada, Hiroaki ; Nagai, Haruyasu ; Kondo, Hiroaki ; Uchida, Junya ; Goto, Daisuke ; Quélo, Denis ; Mathieu, Anne ; Quérel, Arnaud ; Fang, Sheng ; Morino, Yu ; Schoenberg, Pontus ; Grahn, Håkan ; Brännström, Niklas ; Hirao, Shigekazu ; Tsuruta, Haruo ; Yamazawa, Hiromi ; Nakajima, Teruyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2107-feecc703120f840d6cae9bdd32c0406cca1d4d9f36ef393c99e6cfed449fbf043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric and Oceanic Physics</topic><topic>Atmospheric diffusion</topic><topic>Atmospheric dispersion</topic><topic>Atmospheric models</topic><topic>Caesium</topic><topic>Caesium 137</topic><topic>Cesium</topic><topic>Cesium 137</topic><topic>Cesium isotopes</topic><topic>Cesium radioisotopes</topic><topic>Computer simulation</topic><topic>Deposition</topic><topic>deposition process</topic><topic>Diffusion</topic><topic>Diffusion processes</topic><topic>Dye dispersion</topic><topic>Emission</topic><topic>Emission inventories</topic><topic>Environmental Sciences</topic><topic>Figure of merit</topic><topic>Fluxes</topic><topic>Geophysics</topic><topic>Industrial plant emissions</topic><topic>Intercomparison</topic><topic>Meteorological data</topic><topic>model intercomparison</topic><topic>Nuclear accidents</topic><topic>Nuclear accidents & safety</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Physics</topic><topic>Pollution dispersion</topic><topic>Resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Yousuke</creatorcontrib><creatorcontrib>Takigawa, Masayuki</creatorcontrib><creatorcontrib>Sekiyama, Tsuyoshi Thomas</creatorcontrib><creatorcontrib>Kajino, Mizuo</creatorcontrib><creatorcontrib>Terada, Hiroaki</creatorcontrib><creatorcontrib>Nagai, Haruyasu</creatorcontrib><creatorcontrib>Kondo, Hiroaki</creatorcontrib><creatorcontrib>Uchida, Junya</creatorcontrib><creatorcontrib>Goto, Daisuke</creatorcontrib><creatorcontrib>Quélo, Denis</creatorcontrib><creatorcontrib>Mathieu, Anne</creatorcontrib><creatorcontrib>Quérel, Arnaud</creatorcontrib><creatorcontrib>Fang, Sheng</creatorcontrib><creatorcontrib>Morino, Yu</creatorcontrib><creatorcontrib>Schoenberg, Pontus</creatorcontrib><creatorcontrib>Grahn, Håkan</creatorcontrib><creatorcontrib>Brännström, Niklas</creatorcontrib><creatorcontrib>Hirao, Shigekazu</creatorcontrib><creatorcontrib>Tsuruta, Haruo</creatorcontrib><creatorcontrib>Yamazawa, Hiromi</creatorcontrib><creatorcontrib>Nakajima, Teruyuki</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Yousuke</au><au>Takigawa, Masayuki</au><au>Sekiyama, Tsuyoshi Thomas</au><au>Kajino, Mizuo</au><au>Terada, Hiroaki</au><au>Nagai, Haruyasu</au><au>Kondo, Hiroaki</au><au>Uchida, Junya</au><au>Goto, Daisuke</au><au>Quélo, Denis</au><au>Mathieu, Anne</au><au>Quérel, Arnaud</au><au>Fang, Sheng</au><au>Morino, Yu</au><au>Schoenberg, Pontus</au><au>Grahn, Håkan</au><au>Brännström, Niklas</au><au>Hirao, Shigekazu</au><au>Tsuruta, Haruo</au><au>Yamazawa, Hiromi</au><au>Nakajima, Teruyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2018-10-27</date><risdate>2018</risdate><volume>123</volume><issue>20</issue><spage>11,748</spage><epage>11,765</epage><pages>11,748-11,765</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric 137Cs events observed by measurements, and the figure of merit in space for the total deposition of 137Cs exceeded 80. The lower score of the atmospheric 137Cs than that of the deposition originated from the difference in timing between observed and simulated atmospheric 137Cs. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric 137Cs events. The results further revealed that differences in 137Cs concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric 137Cs, and those with strong diffusion succeeded in capturing the high 137Cs concentrations observed; however, they also tended to overestimate the concentrations.
Key Points
A model intercomparison of the atmospheric dispersion of 137Cs using identical input data was conducted
Deposition and diffusion were key processes responsible for the differences among the models when the meteorological field was reproduced
A score‐weighted ensemble‐mean distribution of the atmospheric 137Cs concentration was created</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JD029144</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2975-3738</orcidid><orcidid>https://orcid.org/0000-0002-8936-3101</orcidid><orcidid>https://orcid.org/0000-0002-7201-2540</orcidid><orcidid>https://orcid.org/0000-0001-9634-1595</orcidid><orcidid>https://orcid.org/0000-0002-8340-4312</orcidid><orcidid>https://orcid.org/0000-0002-6857-3783</orcidid><orcidid>https://orcid.org/0000-0003-3949-6202</orcidid><orcidid>https://orcid.org/0000-0002-1843-4291</orcidid><orcidid>https://orcid.org/0000-0002-3578-1332</orcidid><orcidid>https://orcid.org/0000-0002-7986-165X</orcidid><orcidid>https://orcid.org/0000-0002-3988-0565</orcidid><orcidid>https://orcid.org/0000-0003-3344-3986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2018-10, Vol.123 (20), p.11,748-11,765 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02881795v1 |
source | Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Atmospheric and Oceanic Physics Atmospheric diffusion Atmospheric dispersion Atmospheric models Caesium Caesium 137 Cesium Cesium 137 Cesium isotopes Cesium radioisotopes Computer simulation Deposition deposition process Diffusion Diffusion processes Dye dispersion Emission Emission inventories Environmental Sciences Figure of merit Fluxes Geophysics Industrial plant emissions Intercomparison Meteorological data model intercomparison Nuclear accidents Nuclear accidents & safety Nuclear energy Nuclear power plants Physics Pollution dispersion Resolution |
title | Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Intercomparison%20of%20Atmospheric%20137Cs%20From%20the%20Fukushima%20Daiichi%20Nuclear%20Power%20Plant%20Accident:%20Simulations%20Based%20on%20Identical%20Input%20Data&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Sato,%20Yousuke&rft.date=2018-10-27&rft.volume=123&rft.issue=20&rft.spage=11,748&rft.epage=11,765&rft.pages=11,748-11,765&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD029144&rft_dat=%3Cproquest_hal_p%3E2149049163%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149049163&rft_id=info:pmid/&rfr_iscdi=true |