Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data

A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2018-10, Vol.123 (20), p.11,748-11,765
Hauptverfasser: Sato, Yousuke, Takigawa, Masayuki, Sekiyama, Tsuyoshi Thomas, Kajino, Mizuo, Terada, Hiroaki, Nagai, Haruyasu, Kondo, Hiroaki, Uchida, Junya, Goto, Daisuke, Quélo, Denis, Mathieu, Anne, Quérel, Arnaud, Fang, Sheng, Morino, Yu, Schoenberg, Pontus, Grahn, Håkan, Brännström, Niklas, Hirao, Shigekazu, Tsuruta, Haruo, Yamazawa, Hiromi, Nakajima, Teruyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11,765
container_issue 20
container_start_page 11,748
container_title Journal of geophysical research. Atmospheres
container_volume 123
creator Sato, Yousuke
Takigawa, Masayuki
Sekiyama, Tsuyoshi Thomas
Kajino, Mizuo
Terada, Hiroaki
Nagai, Haruyasu
Kondo, Hiroaki
Uchida, Junya
Goto, Daisuke
Quélo, Denis
Mathieu, Anne
Quérel, Arnaud
Fang, Sheng
Morino, Yu
Schoenberg, Pontus
Grahn, Håkan
Brännström, Niklas
Hirao, Shigekazu
Tsuruta, Haruo
Yamazawa, Hiromi
Nakajima, Teruyuki
description A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric 137Cs events observed by measurements, and the figure of merit in space for the total deposition of 137Cs exceeded 80. The lower score of the atmospheric 137Cs than that of the deposition originated from the difference in timing between observed and simulated atmospheric 137Cs. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric 137Cs events. The results further revealed that differences in 137Cs concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric 137Cs, and those with strong diffusion succeeded in capturing the high 137Cs concentrations observed; however, they also tended to overestimate the concentrations. Key Points A model intercomparison of the atmospheric dispersion of 137Cs using identical input data was conducted Deposition and diffusion were key processes responsible for the differences among the models when the meteorological field was reproduced A score‐weighted ensemble‐mean distribution of the atmospheric 137Cs concentration was created
doi_str_mv 10.1029/2018JD029144
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02881795v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149049163</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2107-feecc703120f840d6cae9bdd32c0406cca1d4d9f36ef393c99e6cfed449fbf043</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjVCRQJRbf4AlTj1sO469SdzbstuFRcuHaCtxs4w9VgxJHGyniB_R_1yvtkKdw8zTzNN7M5qi-EThC4VSfC2BNlerjCjnB8VxSSsxa4SoPrzj-uGoOI3xCXI0wPicHxd_rr3BjmyGhEH7flTBRT8Qb8ki9T6OLQanCWX1MpJ18D1JLZL19DzF1vWKrJRzunXkZtIdqkDu_Cvm3KkhkYXWzuCQvpEfrp86lZwfIjlXEQ3JFpvdzGm1Mx-nlKWS-lgcWtVFPP1XT4pf6-8_l5ez7e3FZrnYztqSQj2ziFrXwGgJtuFgKq1QPBrDSg0cKq0VNdwIyyq0TDAtBFbaouFc2EcLnJ0Un_e6rerkGPIl4U165eTlYit3PSibhtZi_ptm7tmeOwb_MmFM8slPYcjryZJyAVzQimUW27NeXYdv75oU5O458v_nyKuL-9V8DlCzv2p9g_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149049163</pqid></control><display><type>article</type><title>Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sato, Yousuke ; Takigawa, Masayuki ; Sekiyama, Tsuyoshi Thomas ; Kajino, Mizuo ; Terada, Hiroaki ; Nagai, Haruyasu ; Kondo, Hiroaki ; Uchida, Junya ; Goto, Daisuke ; Quélo, Denis ; Mathieu, Anne ; Quérel, Arnaud ; Fang, Sheng ; Morino, Yu ; Schoenberg, Pontus ; Grahn, Håkan ; Brännström, Niklas ; Hirao, Shigekazu ; Tsuruta, Haruo ; Yamazawa, Hiromi ; Nakajima, Teruyuki</creator><creatorcontrib>Sato, Yousuke ; Takigawa, Masayuki ; Sekiyama, Tsuyoshi Thomas ; Kajino, Mizuo ; Terada, Hiroaki ; Nagai, Haruyasu ; Kondo, Hiroaki ; Uchida, Junya ; Goto, Daisuke ; Quélo, Denis ; Mathieu, Anne ; Quérel, Arnaud ; Fang, Sheng ; Morino, Yu ; Schoenberg, Pontus ; Grahn, Håkan ; Brännström, Niklas ; Hirao, Shigekazu ; Tsuruta, Haruo ; Yamazawa, Hiromi ; Nakajima, Teruyuki</creatorcontrib><description>A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric 137Cs events observed by measurements, and the figure of merit in space for the total deposition of 137Cs exceeded 80. The lower score of the atmospheric 137Cs than that of the deposition originated from the difference in timing between observed and simulated atmospheric 137Cs. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric 137Cs events. The results further revealed that differences in 137Cs concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric 137Cs, and those with strong diffusion succeeded in capturing the high 137Cs concentrations observed; however, they also tended to overestimate the concentrations. Key Points A model intercomparison of the atmospheric dispersion of 137Cs using identical input data was conducted Deposition and diffusion were key processes responsible for the differences among the models when the meteorological field was reproduced A score‐weighted ensemble‐mean distribution of the atmospheric 137Cs concentration was created</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD029144</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric and Oceanic Physics ; Atmospheric diffusion ; Atmospheric dispersion ; Atmospheric models ; Caesium ; Caesium 137 ; Cesium ; Cesium 137 ; Cesium isotopes ; Cesium radioisotopes ; Computer simulation ; Deposition ; deposition process ; Diffusion ; Diffusion processes ; Dye dispersion ; Emission ; Emission inventories ; Environmental Sciences ; Figure of merit ; Fluxes ; Geophysics ; Industrial plant emissions ; Intercomparison ; Meteorological data ; model intercomparison ; Nuclear accidents ; Nuclear accidents &amp; safety ; Nuclear energy ; Nuclear power plants ; Physics ; Pollution dispersion ; Resolution</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-10, Vol.123 (20), p.11,748-11,765</ispartof><rights>2018. The Authors.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2975-3738 ; 0000-0002-8936-3101 ; 0000-0002-7201-2540 ; 0000-0001-9634-1595 ; 0000-0002-8340-4312 ; 0000-0002-6857-3783 ; 0000-0003-3949-6202 ; 0000-0002-1843-4291 ; 0000-0002-3578-1332 ; 0000-0002-7986-165X ; 0000-0002-3988-0565 ; 0000-0003-3344-3986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JD029144$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JD029144$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02881795$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, Yousuke</creatorcontrib><creatorcontrib>Takigawa, Masayuki</creatorcontrib><creatorcontrib>Sekiyama, Tsuyoshi Thomas</creatorcontrib><creatorcontrib>Kajino, Mizuo</creatorcontrib><creatorcontrib>Terada, Hiroaki</creatorcontrib><creatorcontrib>Nagai, Haruyasu</creatorcontrib><creatorcontrib>Kondo, Hiroaki</creatorcontrib><creatorcontrib>Uchida, Junya</creatorcontrib><creatorcontrib>Goto, Daisuke</creatorcontrib><creatorcontrib>Quélo, Denis</creatorcontrib><creatorcontrib>Mathieu, Anne</creatorcontrib><creatorcontrib>Quérel, Arnaud</creatorcontrib><creatorcontrib>Fang, Sheng</creatorcontrib><creatorcontrib>Morino, Yu</creatorcontrib><creatorcontrib>Schoenberg, Pontus</creatorcontrib><creatorcontrib>Grahn, Håkan</creatorcontrib><creatorcontrib>Brännström, Niklas</creatorcontrib><creatorcontrib>Hirao, Shigekazu</creatorcontrib><creatorcontrib>Tsuruta, Haruo</creatorcontrib><creatorcontrib>Yamazawa, Hiromi</creatorcontrib><creatorcontrib>Nakajima, Teruyuki</creatorcontrib><title>Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data</title><title>Journal of geophysical research. Atmospheres</title><description>A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric 137Cs events observed by measurements, and the figure of merit in space for the total deposition of 137Cs exceeded 80. The lower score of the atmospheric 137Cs than that of the deposition originated from the difference in timing between observed and simulated atmospheric 137Cs. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric 137Cs events. The results further revealed that differences in 137Cs concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric 137Cs, and those with strong diffusion succeeded in capturing the high 137Cs concentrations observed; however, they also tended to overestimate the concentrations. Key Points A model intercomparison of the atmospheric dispersion of 137Cs using identical input data was conducted Deposition and diffusion were key processes responsible for the differences among the models when the meteorological field was reproduced A score‐weighted ensemble‐mean distribution of the atmospheric 137Cs concentration was created</description><subject>Atmospheric and Oceanic Physics</subject><subject>Atmospheric diffusion</subject><subject>Atmospheric dispersion</subject><subject>Atmospheric models</subject><subject>Caesium</subject><subject>Caesium 137</subject><subject>Cesium</subject><subject>Cesium 137</subject><subject>Cesium isotopes</subject><subject>Cesium radioisotopes</subject><subject>Computer simulation</subject><subject>Deposition</subject><subject>deposition process</subject><subject>Diffusion</subject><subject>Diffusion processes</subject><subject>Dye dispersion</subject><subject>Emission</subject><subject>Emission inventories</subject><subject>Environmental Sciences</subject><subject>Figure of merit</subject><subject>Fluxes</subject><subject>Geophysics</subject><subject>Industrial plant emissions</subject><subject>Intercomparison</subject><subject>Meteorological data</subject><subject>model intercomparison</subject><subject>Nuclear accidents</subject><subject>Nuclear accidents &amp; safety</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Physics</subject><subject>Pollution dispersion</subject><subject>Resolution</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNUU1P3DAQjVCRQJRbf4AlTj1sO469SdzbstuFRcuHaCtxs4w9VgxJHGyniB_R_1yvtkKdw8zTzNN7M5qi-EThC4VSfC2BNlerjCjnB8VxSSsxa4SoPrzj-uGoOI3xCXI0wPicHxd_rr3BjmyGhEH7flTBRT8Qb8ki9T6OLQanCWX1MpJ18D1JLZL19DzF1vWKrJRzunXkZtIdqkDu_Cvm3KkhkYXWzuCQvpEfrp86lZwfIjlXEQ3JFpvdzGm1Mx-nlKWS-lgcWtVFPP1XT4pf6-8_l5ez7e3FZrnYztqSQj2ziFrXwGgJtuFgKq1QPBrDSg0cKq0VNdwIyyq0TDAtBFbaouFc2EcLnJ0Un_e6rerkGPIl4U165eTlYit3PSibhtZi_ptm7tmeOwb_MmFM8slPYcjryZJyAVzQimUW27NeXYdv75oU5O458v_nyKuL-9V8DlCzv2p9g_I</recordid><startdate>20181027</startdate><enddate>20181027</enddate><creator>Sato, Yousuke</creator><creator>Takigawa, Masayuki</creator><creator>Sekiyama, Tsuyoshi Thomas</creator><creator>Kajino, Mizuo</creator><creator>Terada, Hiroaki</creator><creator>Nagai, Haruyasu</creator><creator>Kondo, Hiroaki</creator><creator>Uchida, Junya</creator><creator>Goto, Daisuke</creator><creator>Quélo, Denis</creator><creator>Mathieu, Anne</creator><creator>Quérel, Arnaud</creator><creator>Fang, Sheng</creator><creator>Morino, Yu</creator><creator>Schoenberg, Pontus</creator><creator>Grahn, Håkan</creator><creator>Brännström, Niklas</creator><creator>Hirao, Shigekazu</creator><creator>Tsuruta, Haruo</creator><creator>Yamazawa, Hiromi</creator><creator>Nakajima, Teruyuki</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2975-3738</orcidid><orcidid>https://orcid.org/0000-0002-8936-3101</orcidid><orcidid>https://orcid.org/0000-0002-7201-2540</orcidid><orcidid>https://orcid.org/0000-0001-9634-1595</orcidid><orcidid>https://orcid.org/0000-0002-8340-4312</orcidid><orcidid>https://orcid.org/0000-0002-6857-3783</orcidid><orcidid>https://orcid.org/0000-0003-3949-6202</orcidid><orcidid>https://orcid.org/0000-0002-1843-4291</orcidid><orcidid>https://orcid.org/0000-0002-3578-1332</orcidid><orcidid>https://orcid.org/0000-0002-7986-165X</orcidid><orcidid>https://orcid.org/0000-0002-3988-0565</orcidid><orcidid>https://orcid.org/0000-0003-3344-3986</orcidid></search><sort><creationdate>20181027</creationdate><title>Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data</title><author>Sato, Yousuke ; Takigawa, Masayuki ; Sekiyama, Tsuyoshi Thomas ; Kajino, Mizuo ; Terada, Hiroaki ; Nagai, Haruyasu ; Kondo, Hiroaki ; Uchida, Junya ; Goto, Daisuke ; Quélo, Denis ; Mathieu, Anne ; Quérel, Arnaud ; Fang, Sheng ; Morino, Yu ; Schoenberg, Pontus ; Grahn, Håkan ; Brännström, Niklas ; Hirao, Shigekazu ; Tsuruta, Haruo ; Yamazawa, Hiromi ; Nakajima, Teruyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2107-feecc703120f840d6cae9bdd32c0406cca1d4d9f36ef393c99e6cfed449fbf043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric and Oceanic Physics</topic><topic>Atmospheric diffusion</topic><topic>Atmospheric dispersion</topic><topic>Atmospheric models</topic><topic>Caesium</topic><topic>Caesium 137</topic><topic>Cesium</topic><topic>Cesium 137</topic><topic>Cesium isotopes</topic><topic>Cesium radioisotopes</topic><topic>Computer simulation</topic><topic>Deposition</topic><topic>deposition process</topic><topic>Diffusion</topic><topic>Diffusion processes</topic><topic>Dye dispersion</topic><topic>Emission</topic><topic>Emission inventories</topic><topic>Environmental Sciences</topic><topic>Figure of merit</topic><topic>Fluxes</topic><topic>Geophysics</topic><topic>Industrial plant emissions</topic><topic>Intercomparison</topic><topic>Meteorological data</topic><topic>model intercomparison</topic><topic>Nuclear accidents</topic><topic>Nuclear accidents &amp; safety</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Physics</topic><topic>Pollution dispersion</topic><topic>Resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Yousuke</creatorcontrib><creatorcontrib>Takigawa, Masayuki</creatorcontrib><creatorcontrib>Sekiyama, Tsuyoshi Thomas</creatorcontrib><creatorcontrib>Kajino, Mizuo</creatorcontrib><creatorcontrib>Terada, Hiroaki</creatorcontrib><creatorcontrib>Nagai, Haruyasu</creatorcontrib><creatorcontrib>Kondo, Hiroaki</creatorcontrib><creatorcontrib>Uchida, Junya</creatorcontrib><creatorcontrib>Goto, Daisuke</creatorcontrib><creatorcontrib>Quélo, Denis</creatorcontrib><creatorcontrib>Mathieu, Anne</creatorcontrib><creatorcontrib>Quérel, Arnaud</creatorcontrib><creatorcontrib>Fang, Sheng</creatorcontrib><creatorcontrib>Morino, Yu</creatorcontrib><creatorcontrib>Schoenberg, Pontus</creatorcontrib><creatorcontrib>Grahn, Håkan</creatorcontrib><creatorcontrib>Brännström, Niklas</creatorcontrib><creatorcontrib>Hirao, Shigekazu</creatorcontrib><creatorcontrib>Tsuruta, Haruo</creatorcontrib><creatorcontrib>Yamazawa, Hiromi</creatorcontrib><creatorcontrib>Nakajima, Teruyuki</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Yousuke</au><au>Takigawa, Masayuki</au><au>Sekiyama, Tsuyoshi Thomas</au><au>Kajino, Mizuo</au><au>Terada, Hiroaki</au><au>Nagai, Haruyasu</au><au>Kondo, Hiroaki</au><au>Uchida, Junya</au><au>Goto, Daisuke</au><au>Quélo, Denis</au><au>Mathieu, Anne</au><au>Quérel, Arnaud</au><au>Fang, Sheng</au><au>Morino, Yu</au><au>Schoenberg, Pontus</au><au>Grahn, Håkan</au><au>Brännström, Niklas</au><au>Hirao, Shigekazu</au><au>Tsuruta, Haruo</au><au>Yamazawa, Hiromi</au><au>Nakajima, Teruyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2018-10-27</date><risdate>2018</risdate><volume>123</volume><issue>20</issue><spage>11,748</spage><epage>11,765</epage><pages>11,748-11,765</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>A model intercomparison of the atmospheric dispersion of cesium‐137 (137Cs) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric 137Cs in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric 137Cs events observed by measurements, and the figure of merit in space for the total deposition of 137Cs exceeded 80. The lower score of the atmospheric 137Cs than that of the deposition originated from the difference in timing between observed and simulated atmospheric 137Cs. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric 137Cs events. The results further revealed that differences in 137Cs concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric 137Cs, and those with strong diffusion succeeded in capturing the high 137Cs concentrations observed; however, they also tended to overestimate the concentrations. Key Points A model intercomparison of the atmospheric dispersion of 137Cs using identical input data was conducted Deposition and diffusion were key processes responsible for the differences among the models when the meteorological field was reproduced A score‐weighted ensemble‐mean distribution of the atmospheric 137Cs concentration was created</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JD029144</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2975-3738</orcidid><orcidid>https://orcid.org/0000-0002-8936-3101</orcidid><orcidid>https://orcid.org/0000-0002-7201-2540</orcidid><orcidid>https://orcid.org/0000-0001-9634-1595</orcidid><orcidid>https://orcid.org/0000-0002-8340-4312</orcidid><orcidid>https://orcid.org/0000-0002-6857-3783</orcidid><orcidid>https://orcid.org/0000-0003-3949-6202</orcidid><orcidid>https://orcid.org/0000-0002-1843-4291</orcidid><orcidid>https://orcid.org/0000-0002-3578-1332</orcidid><orcidid>https://orcid.org/0000-0002-7986-165X</orcidid><orcidid>https://orcid.org/0000-0002-3988-0565</orcidid><orcidid>https://orcid.org/0000-0003-3344-3986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2018-10, Vol.123 (20), p.11,748-11,765
issn 2169-897X
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_hal_02881795v1
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Atmospheric and Oceanic Physics
Atmospheric diffusion
Atmospheric dispersion
Atmospheric models
Caesium
Caesium 137
Cesium
Cesium 137
Cesium isotopes
Cesium radioisotopes
Computer simulation
Deposition
deposition process
Diffusion
Diffusion processes
Dye dispersion
Emission
Emission inventories
Environmental Sciences
Figure of merit
Fluxes
Geophysics
Industrial plant emissions
Intercomparison
Meteorological data
model intercomparison
Nuclear accidents
Nuclear accidents & safety
Nuclear energy
Nuclear power plants
Physics
Pollution dispersion
Resolution
title Model Intercomparison of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Intercomparison%20of%20Atmospheric%20137Cs%20From%20the%20Fukushima%20Daiichi%20Nuclear%20Power%20Plant%20Accident:%20Simulations%20Based%20on%20Identical%20Input%20Data&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Sato,%20Yousuke&rft.date=2018-10-27&rft.volume=123&rft.issue=20&rft.spage=11,748&rft.epage=11,765&rft.pages=11,748-11,765&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD029144&rft_dat=%3Cproquest_hal_p%3E2149049163%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149049163&rft_id=info:pmid/&rfr_iscdi=true