Conditioned local limit theorems for random walks defined on finite Markov chains
Let ( X n ) n ⩾ 0 be a Markov chain with values in a finite state space X starting at X 0 = x ∈ X and let f be a real function defined on X . Set S n = ∑ k = 1 n f ( X k ) , n ⩾ 1 . For any y ∈ R denote by τ y the first time when y + S n becomes non-positive. We study the asymptotic behaviour of the...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2020-02, Vol.176 (1-2), p.669-735 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 735 |
---|---|
container_issue | 1-2 |
container_start_page | 669 |
container_title | Probability theory and related fields |
container_volume | 176 |
creator | Grama, Ion Lauvergnat, Ronan Le Page, Émile |
description | Let
(
X
n
)
n
⩾
0
be a Markov chain with values in a finite state space
X
starting at
X
0
=
x
∈
X
and let
f
be a real function defined on
X
. Set
S
n
=
∑
k
=
1
n
f
(
X
k
)
,
n
⩾
1
. For any
y
∈
R
denote by
τ
y
the first time when
y
+
S
n
becomes non-positive. We study the asymptotic behaviour of the probability
P
x
y
+
S
n
∈
[
z
,
z
+
a
]
,
τ
y
>
n
as
n
→
+
∞
.
We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order
n
3
/
2
and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability
P
x
τ
y
=
n
as
n
→
+
∞
. |
doi_str_mv | 10.1007/s00440-019-00948-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02878963v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344096452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a5168ef07256583afb9b0c8fc5f6b8901d3c915ce520b2d6e320467231a925e83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8BTx6qk682OS6LusKKCHoOaZu62e02a9JV_PemVvTmaYbheV-GB6FzAlcEoLiOAJxDBkRlAIrLTB6gCeGMZhRyfogmQIp0BEGO0UmMawCgjNMJepr7rna9852tcesr0-LWbV2P-5X1wW4jbnzAwXS13-IP024irm3jBtp3OC2ut_jBhI1_x9XKuC6eoqPGtNGe_cwperm9eZ4vsuXj3f18tswqpoo-M4Lk0jZQUJELyUxTqhIq2VSiyUupgNSsUkRUVlAoaZ1bRoHnBWXEKCqsZFN0OfauTKt3wW1N-NTeOL2YLfVwAyoLqXL2ThJ7MbK74N_2NvZ67fehS-_ppIGDyrmgiaIjVQUfY7DNby0BPWjWo2adNOtvzXp4g42hmODu1Ya_6n9SXx3kflo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344096452</pqid></control><display><type>article</type><title>Conditioned local limit theorems for random walks defined on finite Markov chains</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Grama, Ion ; Lauvergnat, Ronan ; Le Page, Émile</creator><creatorcontrib>Grama, Ion ; Lauvergnat, Ronan ; Le Page, Émile</creatorcontrib><description>Let
(
X
n
)
n
⩾
0
be a Markov chain with values in a finite state space
X
starting at
X
0
=
x
∈
X
and let
f
be a real function defined on
X
. Set
S
n
=
∑
k
=
1
n
f
(
X
k
)
,
n
⩾
1
. For any
y
∈
R
denote by
τ
y
the first time when
y
+
S
n
becomes non-positive. We study the asymptotic behaviour of the probability
P
x
y
+
S
n
∈
[
z
,
z
+
a
]
,
τ
y
>
n
as
n
→
+
∞
.
We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order
n
3
/
2
and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability
P
x
τ
y
=
n
as
n
→
+
∞
.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-019-00948-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Economics ; Finance ; Insurance ; Management ; Markov analysis ; Markov chains ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Random walk ; Random walk theory ; Statistics for Business ; Theorems ; Theoretical</subject><ispartof>Probability theory and related fields, 2020-02, Vol.176 (1-2), p.669-735</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Probability Theory and Related Fields is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a5168ef07256583afb9b0c8fc5f6b8901d3c915ce520b2d6e320467231a925e83</citedby><cites>FETCH-LOGICAL-c397t-a5168ef07256583afb9b0c8fc5f6b8901d3c915ce520b2d6e320467231a925e83</cites><orcidid>0000-0003-4957-4454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-019-00948-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-019-00948-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02878963$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grama, Ion</creatorcontrib><creatorcontrib>Lauvergnat, Ronan</creatorcontrib><creatorcontrib>Le Page, Émile</creatorcontrib><title>Conditioned local limit theorems for random walks defined on finite Markov chains</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>Let
(
X
n
)
n
⩾
0
be a Markov chain with values in a finite state space
X
starting at
X
0
=
x
∈
X
and let
f
be a real function defined on
X
. Set
S
n
=
∑
k
=
1
n
f
(
X
k
)
,
n
⩾
1
. For any
y
∈
R
denote by
τ
y
the first time when
y
+
S
n
becomes non-positive. We study the asymptotic behaviour of the probability
P
x
y
+
S
n
∈
[
z
,
z
+
a
]
,
τ
y
>
n
as
n
→
+
∞
.
We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order
n
3
/
2
and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability
P
x
τ
y
=
n
as
n
→
+
∞
.</description><subject>Asymptotic properties</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Statistics for Business</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8BTx6qk682OS6LusKKCHoOaZu62e02a9JV_PemVvTmaYbheV-GB6FzAlcEoLiOAJxDBkRlAIrLTB6gCeGMZhRyfogmQIp0BEGO0UmMawCgjNMJepr7rna9852tcesr0-LWbV2P-5X1wW4jbnzAwXS13-IP024irm3jBtp3OC2ut_jBhI1_x9XKuC6eoqPGtNGe_cwperm9eZ4vsuXj3f18tswqpoo-M4Lk0jZQUJELyUxTqhIq2VSiyUupgNSsUkRUVlAoaZ1bRoHnBWXEKCqsZFN0OfauTKt3wW1N-NTeOL2YLfVwAyoLqXL2ThJ7MbK74N_2NvZ67fehS-_ppIGDyrmgiaIjVQUfY7DNby0BPWjWo2adNOtvzXp4g42hmODu1Ya_6n9SXx3kflo</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Grama, Ion</creator><creator>Lauvergnat, Ronan</creator><creator>Le Page, Émile</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4957-4454</orcidid></search><sort><creationdate>20200201</creationdate><title>Conditioned local limit theorems for random walks defined on finite Markov chains</title><author>Grama, Ion ; Lauvergnat, Ronan ; Le Page, Émile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a5168ef07256583afb9b0c8fc5f6b8901d3c915ce520b2d6e320467231a925e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Statistics for Business</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grama, Ion</creatorcontrib><creatorcontrib>Lauvergnat, Ronan</creatorcontrib><creatorcontrib>Le Page, Émile</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grama, Ion</au><au>Lauvergnat, Ronan</au><au>Le Page, Émile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditioned local limit theorems for random walks defined on finite Markov chains</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>176</volume><issue>1-2</issue><spage>669</spage><epage>735</epage><pages>669-735</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>Let
(
X
n
)
n
⩾
0
be a Markov chain with values in a finite state space
X
starting at
X
0
=
x
∈
X
and let
f
be a real function defined on
X
. Set
S
n
=
∑
k
=
1
n
f
(
X
k
)
,
n
⩾
1
. For any
y
∈
R
denote by
τ
y
the first time when
y
+
S
n
becomes non-positive. We study the asymptotic behaviour of the probability
P
x
y
+
S
n
∈
[
z
,
z
+
a
]
,
τ
y
>
n
as
n
→
+
∞
.
We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order
n
3
/
2
and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability
P
x
τ
y
=
n
as
n
→
+
∞
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-019-00948-8</doi><tpages>67</tpages><orcidid>https://orcid.org/0000-0003-4957-4454</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2020-02, Vol.176 (1-2), p.669-735 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02878963v1 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Asymptotic properties Economics Finance Insurance Management Markov analysis Markov chains Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Operations Research/Decision Theory Probability Probability Theory and Stochastic Processes Quantitative Finance Random walk Random walk theory Statistics for Business Theorems Theoretical |
title | Conditioned local limit theorems for random walks defined on finite Markov chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditioned%20local%20limit%20theorems%20for%20random%20walks%20defined%20on%20finite%20Markov%20chains&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Grama,%20Ion&rft.date=2020-02-01&rft.volume=176&rft.issue=1-2&rft.spage=669&rft.epage=735&rft.pages=669-735&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-019-00948-8&rft_dat=%3Cproquest_hal_p%3E2344096452%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344096452&rft_id=info:pmid/&rfr_iscdi=true |