Conditioned local limit theorems for random walks defined on finite Markov chains

Let ( X n ) n ⩾ 0 be a Markov chain with values in a finite state space X starting at X 0 = x ∈ X and let f be a real function defined on X . Set S n = ∑ k = 1 n f ( X k ) , n ⩾ 1 . For any y ∈ R denote by τ y the first time when y + S n becomes non-positive. We study the asymptotic behaviour of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2020-02, Vol.176 (1-2), p.669-735
Hauptverfasser: Grama, Ion, Lauvergnat, Ronan, Le Page, Émile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 735
container_issue 1-2
container_start_page 669
container_title Probability theory and related fields
container_volume 176
creator Grama, Ion
Lauvergnat, Ronan
Le Page, Émile
description Let ( X n ) n ⩾ 0 be a Markov chain with values in a finite state space X starting at X 0 = x ∈ X and let f be a real function defined on X . Set S n = ∑ k = 1 n f ( X k ) , n ⩾ 1 . For any y ∈ R denote by τ y the first time when y + S n becomes non-positive. We study the asymptotic behaviour of the probability P x y + S n ∈ [ z , z + a ] , τ y > n as n → + ∞ . We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order n 3 / 2 and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability P x τ y = n as n → + ∞ .
doi_str_mv 10.1007/s00440-019-00948-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02878963v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344096452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a5168ef07256583afb9b0c8fc5f6b8901d3c915ce520b2d6e320467231a925e83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8BTx6qk682OS6LusKKCHoOaZu62e02a9JV_PemVvTmaYbheV-GB6FzAlcEoLiOAJxDBkRlAIrLTB6gCeGMZhRyfogmQIp0BEGO0UmMawCgjNMJepr7rna9852tcesr0-LWbV2P-5X1wW4jbnzAwXS13-IP024irm3jBtp3OC2ut_jBhI1_x9XKuC6eoqPGtNGe_cwperm9eZ4vsuXj3f18tswqpoo-M4Lk0jZQUJELyUxTqhIq2VSiyUupgNSsUkRUVlAoaZ1bRoHnBWXEKCqsZFN0OfauTKt3wW1N-NTeOL2YLfVwAyoLqXL2ThJ7MbK74N_2NvZ67fehS-_ppIGDyrmgiaIjVQUfY7DNby0BPWjWo2adNOtvzXp4g42hmODu1Ya_6n9SXx3kflo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344096452</pqid></control><display><type>article</type><title>Conditioned local limit theorems for random walks defined on finite Markov chains</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Grama, Ion ; Lauvergnat, Ronan ; Le Page, Émile</creator><creatorcontrib>Grama, Ion ; Lauvergnat, Ronan ; Le Page, Émile</creatorcontrib><description>Let ( X n ) n ⩾ 0 be a Markov chain with values in a finite state space X starting at X 0 = x ∈ X and let f be a real function defined on X . Set S n = ∑ k = 1 n f ( X k ) , n ⩾ 1 . For any y ∈ R denote by τ y the first time when y + S n becomes non-positive. We study the asymptotic behaviour of the probability P x y + S n ∈ [ z , z + a ] , τ y &gt; n as n → + ∞ . We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order n 3 / 2 and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability P x τ y = n as n → + ∞ .</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-019-00948-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Economics ; Finance ; Insurance ; Management ; Markov analysis ; Markov chains ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Random walk ; Random walk theory ; Statistics for Business ; Theorems ; Theoretical</subject><ispartof>Probability theory and related fields, 2020-02, Vol.176 (1-2), p.669-735</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Probability Theory and Related Fields is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a5168ef07256583afb9b0c8fc5f6b8901d3c915ce520b2d6e320467231a925e83</citedby><cites>FETCH-LOGICAL-c397t-a5168ef07256583afb9b0c8fc5f6b8901d3c915ce520b2d6e320467231a925e83</cites><orcidid>0000-0003-4957-4454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-019-00948-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-019-00948-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02878963$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grama, Ion</creatorcontrib><creatorcontrib>Lauvergnat, Ronan</creatorcontrib><creatorcontrib>Le Page, Émile</creatorcontrib><title>Conditioned local limit theorems for random walks defined on finite Markov chains</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>Let ( X n ) n ⩾ 0 be a Markov chain with values in a finite state space X starting at X 0 = x ∈ X and let f be a real function defined on X . Set S n = ∑ k = 1 n f ( X k ) , n ⩾ 1 . For any y ∈ R denote by τ y the first time when y + S n becomes non-positive. We study the asymptotic behaviour of the probability P x y + S n ∈ [ z , z + a ] , τ y &gt; n as n → + ∞ . We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order n 3 / 2 and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability P x τ y = n as n → + ∞ .</description><subject>Asymptotic properties</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Statistics for Business</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8BTx6qk682OS6LusKKCHoOaZu62e02a9JV_PemVvTmaYbheV-GB6FzAlcEoLiOAJxDBkRlAIrLTB6gCeGMZhRyfogmQIp0BEGO0UmMawCgjNMJepr7rna9852tcesr0-LWbV2P-5X1wW4jbnzAwXS13-IP024irm3jBtp3OC2ut_jBhI1_x9XKuC6eoqPGtNGe_cwperm9eZ4vsuXj3f18tswqpoo-M4Lk0jZQUJELyUxTqhIq2VSiyUupgNSsUkRUVlAoaZ1bRoHnBWXEKCqsZFN0OfauTKt3wW1N-NTeOL2YLfVwAyoLqXL2ThJ7MbK74N_2NvZ67fehS-_ppIGDyrmgiaIjVQUfY7DNby0BPWjWo2adNOtvzXp4g42hmODu1Ya_6n9SXx3kflo</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Grama, Ion</creator><creator>Lauvergnat, Ronan</creator><creator>Le Page, Émile</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4957-4454</orcidid></search><sort><creationdate>20200201</creationdate><title>Conditioned local limit theorems for random walks defined on finite Markov chains</title><author>Grama, Ion ; Lauvergnat, Ronan ; Le Page, Émile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a5168ef07256583afb9b0c8fc5f6b8901d3c915ce520b2d6e320467231a925e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Statistics for Business</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grama, Ion</creatorcontrib><creatorcontrib>Lauvergnat, Ronan</creatorcontrib><creatorcontrib>Le Page, Émile</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grama, Ion</au><au>Lauvergnat, Ronan</au><au>Le Page, Émile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditioned local limit theorems for random walks defined on finite Markov chains</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>176</volume><issue>1-2</issue><spage>669</spage><epage>735</epage><pages>669-735</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>Let ( X n ) n ⩾ 0 be a Markov chain with values in a finite state space X starting at X 0 = x ∈ X and let f be a real function defined on X . Set S n = ∑ k = 1 n f ( X k ) , n ⩾ 1 . For any y ∈ R denote by τ y the first time when y + S n becomes non-positive. We study the asymptotic behaviour of the probability P x y + S n ∈ [ z , z + a ] , τ y &gt; n as n → + ∞ . We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order n 3 / 2 and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability P x τ y = n as n → + ∞ .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-019-00948-8</doi><tpages>67</tpages><orcidid>https://orcid.org/0000-0003-4957-4454</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2020-02, Vol.176 (1-2), p.669-735
issn 0178-8051
1432-2064
language eng
recordid cdi_hal_primary_oai_HAL_hal_02878963v1
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Asymptotic properties
Economics
Finance
Insurance
Management
Markov analysis
Markov chains
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Random walk
Random walk theory
Statistics for Business
Theorems
Theoretical
title Conditioned local limit theorems for random walks defined on finite Markov chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditioned%20local%20limit%20theorems%20for%20random%20walks%20defined%20on%20finite%20Markov%20chains&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Grama,%20Ion&rft.date=2020-02-01&rft.volume=176&rft.issue=1-2&rft.spage=669&rft.epage=735&rft.pages=669-735&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-019-00948-8&rft_dat=%3Cproquest_hal_p%3E2344096452%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344096452&rft_id=info:pmid/&rfr_iscdi=true