Conditioned local limit theorems for random walks defined on finite Markov chains
Let ( X n ) n ⩾ 0 be a Markov chain with values in a finite state space X starting at X 0 = x ∈ X and let f be a real function defined on X . Set S n = ∑ k = 1 n f ( X k ) , n ⩾ 1 . For any y ∈ R denote by τ y the first time when y + S n becomes non-positive. We study the asymptotic behaviour of the...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2020-02, Vol.176 (1-2), p.669-735 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
X
n
)
n
⩾
0
be a Markov chain with values in a finite state space
X
starting at
X
0
=
x
∈
X
and let
f
be a real function defined on
X
. Set
S
n
=
∑
k
=
1
n
f
(
X
k
)
,
n
⩾
1
. For any
y
∈
R
denote by
τ
y
the first time when
y
+
S
n
becomes non-positive. We study the asymptotic behaviour of the probability
P
x
y
+
S
n
∈
[
z
,
z
+
a
]
,
τ
y
>
n
as
n
→
+
∞
.
We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order
n
3
/
2
and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability
P
x
τ
y
=
n
as
n
→
+
∞
. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s00440-019-00948-8 |