Multi-partner benchmark experiment of fatigue crack growth measurements
•Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 2020-08, Vol.235, p.107157, Article 107157 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107157 |
container_title | Engineering fracture mechanics |
container_volume | 235 |
creator | Langlois, Raphaël Cusset, Raphaël Hosdez, Jérôme Bonnand, Vincent Blaysat, Benoit Menut-Tournadre, Léa Neggers, Jan Coret, Michel Henry, Joseph Doquet, Véronique Grédiac, Michel Chiaruttini, Vincent Poncelet, Martin Proudhon, Henry Limodin, Nathalie Réthoré, Julien |
description | •Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and crack growth rate estimation techniques.
The design of reliable structures and the estimation of the residual fatigue life of industrial parts containing flaws or cracks rely on our ability to predict the propagation of fatigue cracks. Whereas in industrial component cracks might have a complex path due to geometry and loading, lab experiments used for identifying crack propagation law are often in pure mode I. The paper presents a synthesis of an experimental benchmark performed in the context of a French national research network. A sample has been designed to produce mixed-mode crack propagation and variation of small scale yielding conditions. Two geometries and two maximum load levels are defined for the two tested materials: a stainless steel and an aluminum alloy. Around ten participants performed experiments using their usual instrumentation. Among the eight possible parameter sets, three are selected for which detailed results are presented. A satisfying overall agreement is obtained. But, some discrepancies are evidenced due either to limitations of the instrumentation or simply because from one lab to the other the applied load is not exactly the same. It is thus concluded that one of the most important issue is boundary conditions, which is confirmed by numerical simulations. |
doi_str_mv | 10.1016/j.engfracmech.2020.107157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02877391v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794420307402</els_id><sourcerecordid>2446727291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-2262ef5c1bc43f88cc13fd3680d3a89ef6b828865ab7620f297310d55c3b369b3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxD0GsWKT4kdjOsqqgRSpiA2vLccZN0iYpdlLg73EUhFiy8nh05s6di9ANwXOCCb-v59BurdOmAVPOKaZjX5BUnKAZkYLFgpH0FM0wJqHOkuQcXXhfY4wFl3iGVs_Dvq_ig3Z9Cy7KoTVlo90ugs8DuKqBto86G1ndV9sBIhM27aKt6z76MmpA-8HByPgrdGb13sP1z3uJ3h4fXpfrePOyelouNrFJWNLHlHIKNjUkD38rpTGE2YIFKwXTMgPLc0ml5KnOBafY0iz4x0WaGpYznuXsEt1NuqXeq0MwqN2X6nSl1ouNGnuYSiFYRo4ksLcTe3Dd-wC-V3U3uDbYUzRJuKCCZiOVTZRxnfcO7K8swWrMWNXqT8ZqzFhNGYfZ5TQL4eRjBU55U4UIoagcmF4VXfUPlW8vZ4oA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446727291</pqid></control><display><type>article</type><title>Multi-partner benchmark experiment of fatigue crack growth measurements</title><source>Access via ScienceDirect (Elsevier)</source><creator>Langlois, Raphaël ; Cusset, Raphaël ; Hosdez, Jérôme ; Bonnand, Vincent ; Blaysat, Benoit ; Menut-Tournadre, Léa ; Neggers, Jan ; Coret, Michel ; Henry, Joseph ; Doquet, Véronique ; Grédiac, Michel ; Chiaruttini, Vincent ; Poncelet, Martin ; Proudhon, Henry ; Limodin, Nathalie ; Réthoré, Julien</creator><creatorcontrib>Langlois, Raphaël ; Cusset, Raphaël ; Hosdez, Jérôme ; Bonnand, Vincent ; Blaysat, Benoit ; Menut-Tournadre, Léa ; Neggers, Jan ; Coret, Michel ; Henry, Joseph ; Doquet, Véronique ; Grédiac, Michel ; Chiaruttini, Vincent ; Poncelet, Martin ; Proudhon, Henry ; Limodin, Nathalie ; Réthoré, Julien ; GDR 3651 FATACRACK, CNRS</creatorcontrib><description>•Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and crack growth rate estimation techniques.
The design of reliable structures and the estimation of the residual fatigue life of industrial parts containing flaws or cracks rely on our ability to predict the propagation of fatigue cracks. Whereas in industrial component cracks might have a complex path due to geometry and loading, lab experiments used for identifying crack propagation law are often in pure mode I. The paper presents a synthesis of an experimental benchmark performed in the context of a French national research network. A sample has been designed to produce mixed-mode crack propagation and variation of small scale yielding conditions. Two geometries and two maximum load levels are defined for the two tested materials: a stainless steel and an aluminum alloy. Around ten participants performed experiments using their usual instrumentation. Among the eight possible parameter sets, three are selected for which detailed results are presented. A satisfying overall agreement is obtained. But, some discrepancies are evidenced due either to limitations of the instrumentation or simply because from one lab to the other the applied load is not exactly the same. It is thus concluded that one of the most important issue is boundary conditions, which is confirmed by numerical simulations.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2020.107157</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aluminum base alloys ; Benchmarks ; Boundary conditions ; Chemical Sciences ; Computer simulation ; Crack growth rate ; Crack path ; Crack propagation ; Digital Image Correlation ; Engineering Sciences ; Fatigue crack growth ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fracture mechanics ; Instruments ; Mixed mode ; Physics ; Propagation ; Propagation modes ; Stainless steels ; Stress intensity factors</subject><ispartof>Engineering fracture mechanics, 2020-08, Vol.235, p.107157, Article 107157</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-2262ef5c1bc43f88cc13fd3680d3a89ef6b828865ab7620f297310d55c3b369b3</citedby><cites>FETCH-LOGICAL-c434t-2262ef5c1bc43f88cc13fd3680d3a89ef6b828865ab7620f297310d55c3b369b3</cites><orcidid>0000-0002-4075-5577 ; 0000-0003-0690-8549 ; 0000-0003-4944-318X ; 0000-0002-7839-130X ; 0000-0003-0382-2897 ; 0000-0002-9695-5535 ; 0000-0002-1541-1588 ; 0000-0002-9135-8387 ; 0000-0003-0768-2676 ; 0000-0002-3921-639X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2020.107157$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02877391$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Langlois, Raphaël</creatorcontrib><creatorcontrib>Cusset, Raphaël</creatorcontrib><creatorcontrib>Hosdez, Jérôme</creatorcontrib><creatorcontrib>Bonnand, Vincent</creatorcontrib><creatorcontrib>Blaysat, Benoit</creatorcontrib><creatorcontrib>Menut-Tournadre, Léa</creatorcontrib><creatorcontrib>Neggers, Jan</creatorcontrib><creatorcontrib>Coret, Michel</creatorcontrib><creatorcontrib>Henry, Joseph</creatorcontrib><creatorcontrib>Doquet, Véronique</creatorcontrib><creatorcontrib>Grédiac, Michel</creatorcontrib><creatorcontrib>Chiaruttini, Vincent</creatorcontrib><creatorcontrib>Poncelet, Martin</creatorcontrib><creatorcontrib>Proudhon, Henry</creatorcontrib><creatorcontrib>Limodin, Nathalie</creatorcontrib><creatorcontrib>Réthoré, Julien</creatorcontrib><creatorcontrib>GDR 3651 FATACRACK, CNRS</creatorcontrib><title>Multi-partner benchmark experiment of fatigue crack growth measurements</title><title>Engineering fracture mechanics</title><description>•Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and crack growth rate estimation techniques.
The design of reliable structures and the estimation of the residual fatigue life of industrial parts containing flaws or cracks rely on our ability to predict the propagation of fatigue cracks. Whereas in industrial component cracks might have a complex path due to geometry and loading, lab experiments used for identifying crack propagation law are often in pure mode I. The paper presents a synthesis of an experimental benchmark performed in the context of a French national research network. A sample has been designed to produce mixed-mode crack propagation and variation of small scale yielding conditions. Two geometries and two maximum load levels are defined for the two tested materials: a stainless steel and an aluminum alloy. Around ten participants performed experiments using their usual instrumentation. Among the eight possible parameter sets, three are selected for which detailed results are presented. A satisfying overall agreement is obtained. But, some discrepancies are evidenced due either to limitations of the instrumentation or simply because from one lab to the other the applied load is not exactly the same. It is thus concluded that one of the most important issue is boundary conditions, which is confirmed by numerical simulations.</description><subject>Aluminum base alloys</subject><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Chemical Sciences</subject><subject>Computer simulation</subject><subject>Crack growth rate</subject><subject>Crack path</subject><subject>Crack propagation</subject><subject>Digital Image Correlation</subject><subject>Engineering Sciences</subject><subject>Fatigue crack growth</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fracture mechanics</subject><subject>Instruments</subject><subject>Mixed mode</subject><subject>Physics</subject><subject>Propagation</subject><subject>Propagation modes</subject><subject>Stainless steels</subject><subject>Stress intensity factors</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEuXxD0GsWKT4kdjOsqqgRSpiA2vLccZN0iYpdlLg73EUhFiy8nh05s6di9ANwXOCCb-v59BurdOmAVPOKaZjX5BUnKAZkYLFgpH0FM0wJqHOkuQcXXhfY4wFl3iGVs_Dvq_ig3Z9Cy7KoTVlo90ugs8DuKqBto86G1ndV9sBIhM27aKt6z76MmpA-8HByPgrdGb13sP1z3uJ3h4fXpfrePOyelouNrFJWNLHlHIKNjUkD38rpTGE2YIFKwXTMgPLc0ml5KnOBafY0iz4x0WaGpYznuXsEt1NuqXeq0MwqN2X6nSl1ouNGnuYSiFYRo4ksLcTe3Dd-wC-V3U3uDbYUzRJuKCCZiOVTZRxnfcO7K8swWrMWNXqT8ZqzFhNGYfZ5TQL4eRjBU55U4UIoagcmF4VXfUPlW8vZ4oA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Langlois, Raphaël</creator><creator>Cusset, Raphaël</creator><creator>Hosdez, Jérôme</creator><creator>Bonnand, Vincent</creator><creator>Blaysat, Benoit</creator><creator>Menut-Tournadre, Léa</creator><creator>Neggers, Jan</creator><creator>Coret, Michel</creator><creator>Henry, Joseph</creator><creator>Doquet, Véronique</creator><creator>Grédiac, Michel</creator><creator>Chiaruttini, Vincent</creator><creator>Poncelet, Martin</creator><creator>Proudhon, Henry</creator><creator>Limodin, Nathalie</creator><creator>Réthoré, Julien</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4075-5577</orcidid><orcidid>https://orcid.org/0000-0003-0690-8549</orcidid><orcidid>https://orcid.org/0000-0003-4944-318X</orcidid><orcidid>https://orcid.org/0000-0002-7839-130X</orcidid><orcidid>https://orcid.org/0000-0003-0382-2897</orcidid><orcidid>https://orcid.org/0000-0002-9695-5535</orcidid><orcidid>https://orcid.org/0000-0002-1541-1588</orcidid><orcidid>https://orcid.org/0000-0002-9135-8387</orcidid><orcidid>https://orcid.org/0000-0003-0768-2676</orcidid><orcidid>https://orcid.org/0000-0002-3921-639X</orcidid></search><sort><creationdate>20200801</creationdate><title>Multi-partner benchmark experiment of fatigue crack growth measurements</title><author>Langlois, Raphaël ; Cusset, Raphaël ; Hosdez, Jérôme ; Bonnand, Vincent ; Blaysat, Benoit ; Menut-Tournadre, Léa ; Neggers, Jan ; Coret, Michel ; Henry, Joseph ; Doquet, Véronique ; Grédiac, Michel ; Chiaruttini, Vincent ; Poncelet, Martin ; Proudhon, Henry ; Limodin, Nathalie ; Réthoré, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-2262ef5c1bc43f88cc13fd3680d3a89ef6b828865ab7620f297310d55c3b369b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum base alloys</topic><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Chemical Sciences</topic><topic>Computer simulation</topic><topic>Crack growth rate</topic><topic>Crack path</topic><topic>Crack propagation</topic><topic>Digital Image Correlation</topic><topic>Engineering Sciences</topic><topic>Fatigue crack growth</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fracture mechanics</topic><topic>Instruments</topic><topic>Mixed mode</topic><topic>Physics</topic><topic>Propagation</topic><topic>Propagation modes</topic><topic>Stainless steels</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langlois, Raphaël</creatorcontrib><creatorcontrib>Cusset, Raphaël</creatorcontrib><creatorcontrib>Hosdez, Jérôme</creatorcontrib><creatorcontrib>Bonnand, Vincent</creatorcontrib><creatorcontrib>Blaysat, Benoit</creatorcontrib><creatorcontrib>Menut-Tournadre, Léa</creatorcontrib><creatorcontrib>Neggers, Jan</creatorcontrib><creatorcontrib>Coret, Michel</creatorcontrib><creatorcontrib>Henry, Joseph</creatorcontrib><creatorcontrib>Doquet, Véronique</creatorcontrib><creatorcontrib>Grédiac, Michel</creatorcontrib><creatorcontrib>Chiaruttini, Vincent</creatorcontrib><creatorcontrib>Poncelet, Martin</creatorcontrib><creatorcontrib>Proudhon, Henry</creatorcontrib><creatorcontrib>Limodin, Nathalie</creatorcontrib><creatorcontrib>Réthoré, Julien</creatorcontrib><creatorcontrib>GDR 3651 FATACRACK, CNRS</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langlois, Raphaël</au><au>Cusset, Raphaël</au><au>Hosdez, Jérôme</au><au>Bonnand, Vincent</au><au>Blaysat, Benoit</au><au>Menut-Tournadre, Léa</au><au>Neggers, Jan</au><au>Coret, Michel</au><au>Henry, Joseph</au><au>Doquet, Véronique</au><au>Grédiac, Michel</au><au>Chiaruttini, Vincent</au><au>Poncelet, Martin</au><au>Proudhon, Henry</au><au>Limodin, Nathalie</au><au>Réthoré, Julien</au><aucorp>GDR 3651 FATACRACK, CNRS</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-partner benchmark experiment of fatigue crack growth measurements</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>235</volume><spage>107157</spage><pages>107157-</pages><artnum>107157</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and crack growth rate estimation techniques.
The design of reliable structures and the estimation of the residual fatigue life of industrial parts containing flaws or cracks rely on our ability to predict the propagation of fatigue cracks. Whereas in industrial component cracks might have a complex path due to geometry and loading, lab experiments used for identifying crack propagation law are often in pure mode I. The paper presents a synthesis of an experimental benchmark performed in the context of a French national research network. A sample has been designed to produce mixed-mode crack propagation and variation of small scale yielding conditions. Two geometries and two maximum load levels are defined for the two tested materials: a stainless steel and an aluminum alloy. Around ten participants performed experiments using their usual instrumentation. Among the eight possible parameter sets, three are selected for which detailed results are presented. A satisfying overall agreement is obtained. But, some discrepancies are evidenced due either to limitations of the instrumentation or simply because from one lab to the other the applied load is not exactly the same. It is thus concluded that one of the most important issue is boundary conditions, which is confirmed by numerical simulations.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2020.107157</doi><orcidid>https://orcid.org/0000-0002-4075-5577</orcidid><orcidid>https://orcid.org/0000-0003-0690-8549</orcidid><orcidid>https://orcid.org/0000-0003-4944-318X</orcidid><orcidid>https://orcid.org/0000-0002-7839-130X</orcidid><orcidid>https://orcid.org/0000-0003-0382-2897</orcidid><orcidid>https://orcid.org/0000-0002-9695-5535</orcidid><orcidid>https://orcid.org/0000-0002-1541-1588</orcidid><orcidid>https://orcid.org/0000-0002-9135-8387</orcidid><orcidid>https://orcid.org/0000-0003-0768-2676</orcidid><orcidid>https://orcid.org/0000-0002-3921-639X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7944 |
ispartof | Engineering fracture mechanics, 2020-08, Vol.235, p.107157, Article 107157 |
issn | 0013-7944 1873-7315 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02877391v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminum base alloys Benchmarks Boundary conditions Chemical Sciences Computer simulation Crack growth rate Crack path Crack propagation Digital Image Correlation Engineering Sciences Fatigue crack growth Fatigue cracks Fatigue failure Fatigue life Fracture mechanics Instruments Mixed mode Physics Propagation Propagation modes Stainless steels Stress intensity factors |
title | Multi-partner benchmark experiment of fatigue crack growth measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-partner%20benchmark%20experiment%20of%20fatigue%20crack%20growth%20measurements&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Langlois,%20Rapha%C3%ABl&rft.aucorp=GDR%203651%20FATACRACK,%20CNRS&rft.date=2020-08-01&rft.volume=235&rft.spage=107157&rft.pages=107157-&rft.artnum=107157&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2020.107157&rft_dat=%3Cproquest_hal_p%3E2446727291%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446727291&rft_id=info:pmid/&rft_els_id=S0013794420307402&rfr_iscdi=true |