Multi-partner benchmark experiment of fatigue crack growth measurements

•Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2020-08, Vol.235, p.107157, Article 107157
Hauptverfasser: Langlois, Raphaël, Cusset, Raphaël, Hosdez, Jérôme, Bonnand, Vincent, Blaysat, Benoit, Menut-Tournadre, Léa, Neggers, Jan, Coret, Michel, Henry, Joseph, Doquet, Véronique, Grédiac, Michel, Chiaruttini, Vincent, Poncelet, Martin, Proudhon, Henry, Limodin, Nathalie, Réthoré, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107157
container_title Engineering fracture mechanics
container_volume 235
creator Langlois, Raphaël
Cusset, Raphaël
Hosdez, Jérôme
Bonnand, Vincent
Blaysat, Benoit
Menut-Tournadre, Léa
Neggers, Jan
Coret, Michel
Henry, Joseph
Doquet, Véronique
Grédiac, Michel
Chiaruttini, Vincent
Poncelet, Martin
Proudhon, Henry
Limodin, Nathalie
Réthoré, Julien
description •Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and crack growth rate estimation techniques. The design of reliable structures and the estimation of the residual fatigue life of industrial parts containing flaws or cracks rely on our ability to predict the propagation of fatigue cracks. Whereas in industrial component cracks might have a complex path due to geometry and loading, lab experiments used for identifying crack propagation law are often in pure mode I. The paper presents a synthesis of an experimental benchmark performed in the context of a French national research network. A sample has been designed to produce mixed-mode crack propagation and variation of small scale yielding conditions. Two geometries and two maximum load levels are defined for the two tested materials: a stainless steel and an aluminum alloy. Around ten participants performed experiments using their usual instrumentation. Among the eight possible parameter sets, three are selected for which detailed results are presented. A satisfying overall agreement is obtained. But, some discrepancies are evidenced due either to limitations of the instrumentation or simply because from one lab to the other the applied load is not exactly the same. It is thus concluded that one of the most important issue is boundary conditions, which is confirmed by numerical simulations.
doi_str_mv 10.1016/j.engfracmech.2020.107157
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02877391v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794420307402</els_id><sourcerecordid>2446727291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-2262ef5c1bc43f88cc13fd3680d3a89ef6b828865ab7620f297310d55c3b369b3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxD0GsWKT4kdjOsqqgRSpiA2vLccZN0iYpdlLg73EUhFiy8nh05s6di9ANwXOCCb-v59BurdOmAVPOKaZjX5BUnKAZkYLFgpH0FM0wJqHOkuQcXXhfY4wFl3iGVs_Dvq_ig3Z9Cy7KoTVlo90ugs8DuKqBto86G1ndV9sBIhM27aKt6z76MmpA-8HByPgrdGb13sP1z3uJ3h4fXpfrePOyelouNrFJWNLHlHIKNjUkD38rpTGE2YIFKwXTMgPLc0ml5KnOBafY0iz4x0WaGpYznuXsEt1NuqXeq0MwqN2X6nSl1ouNGnuYSiFYRo4ksLcTe3Dd-wC-V3U3uDbYUzRJuKCCZiOVTZRxnfcO7K8swWrMWNXqT8ZqzFhNGYfZ5TQL4eRjBU55U4UIoagcmF4VXfUPlW8vZ4oA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446727291</pqid></control><display><type>article</type><title>Multi-partner benchmark experiment of fatigue crack growth measurements</title><source>Access via ScienceDirect (Elsevier)</source><creator>Langlois, Raphaël ; Cusset, Raphaël ; Hosdez, Jérôme ; Bonnand, Vincent ; Blaysat, Benoit ; Menut-Tournadre, Léa ; Neggers, Jan ; Coret, Michel ; Henry, Joseph ; Doquet, Véronique ; Grédiac, Michel ; Chiaruttini, Vincent ; Poncelet, Martin ; Proudhon, Henry ; Limodin, Nathalie ; Réthoré, Julien</creator><creatorcontrib>Langlois, Raphaël ; Cusset, Raphaël ; Hosdez, Jérôme ; Bonnand, Vincent ; Blaysat, Benoit ; Menut-Tournadre, Léa ; Neggers, Jan ; Coret, Michel ; Henry, Joseph ; Doquet, Véronique ; Grédiac, Michel ; Chiaruttini, Vincent ; Poncelet, Martin ; Proudhon, Henry ; Limodin, Nathalie ; Réthoré, Julien ; GDR 3651 FATACRACK, CNRS</creatorcontrib><description>•Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and crack growth rate estimation techniques. The design of reliable structures and the estimation of the residual fatigue life of industrial parts containing flaws or cracks rely on our ability to predict the propagation of fatigue cracks. Whereas in industrial component cracks might have a complex path due to geometry and loading, lab experiments used for identifying crack propagation law are often in pure mode I. The paper presents a synthesis of an experimental benchmark performed in the context of a French national research network. A sample has been designed to produce mixed-mode crack propagation and variation of small scale yielding conditions. Two geometries and two maximum load levels are defined for the two tested materials: a stainless steel and an aluminum alloy. Around ten participants performed experiments using their usual instrumentation. Among the eight possible parameter sets, three are selected for which detailed results are presented. A satisfying overall agreement is obtained. But, some discrepancies are evidenced due either to limitations of the instrumentation or simply because from one lab to the other the applied load is not exactly the same. It is thus concluded that one of the most important issue is boundary conditions, which is confirmed by numerical simulations.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2020.107157</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aluminum base alloys ; Benchmarks ; Boundary conditions ; Chemical Sciences ; Computer simulation ; Crack growth rate ; Crack path ; Crack propagation ; Digital Image Correlation ; Engineering Sciences ; Fatigue crack growth ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fracture mechanics ; Instruments ; Mixed mode ; Physics ; Propagation ; Propagation modes ; Stainless steels ; Stress intensity factors</subject><ispartof>Engineering fracture mechanics, 2020-08, Vol.235, p.107157, Article 107157</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-2262ef5c1bc43f88cc13fd3680d3a89ef6b828865ab7620f297310d55c3b369b3</citedby><cites>FETCH-LOGICAL-c434t-2262ef5c1bc43f88cc13fd3680d3a89ef6b828865ab7620f297310d55c3b369b3</cites><orcidid>0000-0002-4075-5577 ; 0000-0003-0690-8549 ; 0000-0003-4944-318X ; 0000-0002-7839-130X ; 0000-0003-0382-2897 ; 0000-0002-9695-5535 ; 0000-0002-1541-1588 ; 0000-0002-9135-8387 ; 0000-0003-0768-2676 ; 0000-0002-3921-639X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2020.107157$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02877391$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Langlois, Raphaël</creatorcontrib><creatorcontrib>Cusset, Raphaël</creatorcontrib><creatorcontrib>Hosdez, Jérôme</creatorcontrib><creatorcontrib>Bonnand, Vincent</creatorcontrib><creatorcontrib>Blaysat, Benoit</creatorcontrib><creatorcontrib>Menut-Tournadre, Léa</creatorcontrib><creatorcontrib>Neggers, Jan</creatorcontrib><creatorcontrib>Coret, Michel</creatorcontrib><creatorcontrib>Henry, Joseph</creatorcontrib><creatorcontrib>Doquet, Véronique</creatorcontrib><creatorcontrib>Grédiac, Michel</creatorcontrib><creatorcontrib>Chiaruttini, Vincent</creatorcontrib><creatorcontrib>Poncelet, Martin</creatorcontrib><creatorcontrib>Proudhon, Henry</creatorcontrib><creatorcontrib>Limodin, Nathalie</creatorcontrib><creatorcontrib>Réthoré, Julien</creatorcontrib><creatorcontrib>GDR 3651 FATACRACK, CNRS</creatorcontrib><title>Multi-partner benchmark experiment of fatigue crack growth measurements</title><title>Engineering fracture mechanics</title><description>•Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and crack growth rate estimation techniques. The design of reliable structures and the estimation of the residual fatigue life of industrial parts containing flaws or cracks rely on our ability to predict the propagation of fatigue cracks. Whereas in industrial component cracks might have a complex path due to geometry and loading, lab experiments used for identifying crack propagation law are often in pure mode I. The paper presents a synthesis of an experimental benchmark performed in the context of a French national research network. A sample has been designed to produce mixed-mode crack propagation and variation of small scale yielding conditions. Two geometries and two maximum load levels are defined for the two tested materials: a stainless steel and an aluminum alloy. Around ten participants performed experiments using their usual instrumentation. Among the eight possible parameter sets, three are selected for which detailed results are presented. A satisfying overall agreement is obtained. But, some discrepancies are evidenced due either to limitations of the instrumentation or simply because from one lab to the other the applied load is not exactly the same. It is thus concluded that one of the most important issue is boundary conditions, which is confirmed by numerical simulations.</description><subject>Aluminum base alloys</subject><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Chemical Sciences</subject><subject>Computer simulation</subject><subject>Crack growth rate</subject><subject>Crack path</subject><subject>Crack propagation</subject><subject>Digital Image Correlation</subject><subject>Engineering Sciences</subject><subject>Fatigue crack growth</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fracture mechanics</subject><subject>Instruments</subject><subject>Mixed mode</subject><subject>Physics</subject><subject>Propagation</subject><subject>Propagation modes</subject><subject>Stainless steels</subject><subject>Stress intensity factors</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEuXxD0GsWKT4kdjOsqqgRSpiA2vLccZN0iYpdlLg73EUhFiy8nh05s6di9ANwXOCCb-v59BurdOmAVPOKaZjX5BUnKAZkYLFgpH0FM0wJqHOkuQcXXhfY4wFl3iGVs_Dvq_ig3Z9Cy7KoTVlo90ugs8DuKqBto86G1ndV9sBIhM27aKt6z76MmpA-8HByPgrdGb13sP1z3uJ3h4fXpfrePOyelouNrFJWNLHlHIKNjUkD38rpTGE2YIFKwXTMgPLc0ml5KnOBafY0iz4x0WaGpYznuXsEt1NuqXeq0MwqN2X6nSl1ouNGnuYSiFYRo4ksLcTe3Dd-wC-V3U3uDbYUzRJuKCCZiOVTZRxnfcO7K8swWrMWNXqT8ZqzFhNGYfZ5TQL4eRjBU55U4UIoagcmF4VXfUPlW8vZ4oA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Langlois, Raphaël</creator><creator>Cusset, Raphaël</creator><creator>Hosdez, Jérôme</creator><creator>Bonnand, Vincent</creator><creator>Blaysat, Benoit</creator><creator>Menut-Tournadre, Léa</creator><creator>Neggers, Jan</creator><creator>Coret, Michel</creator><creator>Henry, Joseph</creator><creator>Doquet, Véronique</creator><creator>Grédiac, Michel</creator><creator>Chiaruttini, Vincent</creator><creator>Poncelet, Martin</creator><creator>Proudhon, Henry</creator><creator>Limodin, Nathalie</creator><creator>Réthoré, Julien</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4075-5577</orcidid><orcidid>https://orcid.org/0000-0003-0690-8549</orcidid><orcidid>https://orcid.org/0000-0003-4944-318X</orcidid><orcidid>https://orcid.org/0000-0002-7839-130X</orcidid><orcidid>https://orcid.org/0000-0003-0382-2897</orcidid><orcidid>https://orcid.org/0000-0002-9695-5535</orcidid><orcidid>https://orcid.org/0000-0002-1541-1588</orcidid><orcidid>https://orcid.org/0000-0002-9135-8387</orcidid><orcidid>https://orcid.org/0000-0003-0768-2676</orcidid><orcidid>https://orcid.org/0000-0002-3921-639X</orcidid></search><sort><creationdate>20200801</creationdate><title>Multi-partner benchmark experiment of fatigue crack growth measurements</title><author>Langlois, Raphaël ; Cusset, Raphaël ; Hosdez, Jérôme ; Bonnand, Vincent ; Blaysat, Benoit ; Menut-Tournadre, Léa ; Neggers, Jan ; Coret, Michel ; Henry, Joseph ; Doquet, Véronique ; Grédiac, Michel ; Chiaruttini, Vincent ; Poncelet, Martin ; Proudhon, Henry ; Limodin, Nathalie ; Réthoré, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-2262ef5c1bc43f88cc13fd3680d3a89ef6b828865ab7620f297310d55c3b369b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum base alloys</topic><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Chemical Sciences</topic><topic>Computer simulation</topic><topic>Crack growth rate</topic><topic>Crack path</topic><topic>Crack propagation</topic><topic>Digital Image Correlation</topic><topic>Engineering Sciences</topic><topic>Fatigue crack growth</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fracture mechanics</topic><topic>Instruments</topic><topic>Mixed mode</topic><topic>Physics</topic><topic>Propagation</topic><topic>Propagation modes</topic><topic>Stainless steels</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langlois, Raphaël</creatorcontrib><creatorcontrib>Cusset, Raphaël</creatorcontrib><creatorcontrib>Hosdez, Jérôme</creatorcontrib><creatorcontrib>Bonnand, Vincent</creatorcontrib><creatorcontrib>Blaysat, Benoit</creatorcontrib><creatorcontrib>Menut-Tournadre, Léa</creatorcontrib><creatorcontrib>Neggers, Jan</creatorcontrib><creatorcontrib>Coret, Michel</creatorcontrib><creatorcontrib>Henry, Joseph</creatorcontrib><creatorcontrib>Doquet, Véronique</creatorcontrib><creatorcontrib>Grédiac, Michel</creatorcontrib><creatorcontrib>Chiaruttini, Vincent</creatorcontrib><creatorcontrib>Poncelet, Martin</creatorcontrib><creatorcontrib>Proudhon, Henry</creatorcontrib><creatorcontrib>Limodin, Nathalie</creatorcontrib><creatorcontrib>Réthoré, Julien</creatorcontrib><creatorcontrib>GDR 3651 FATACRACK, CNRS</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langlois, Raphaël</au><au>Cusset, Raphaël</au><au>Hosdez, Jérôme</au><au>Bonnand, Vincent</au><au>Blaysat, Benoit</au><au>Menut-Tournadre, Léa</au><au>Neggers, Jan</au><au>Coret, Michel</au><au>Henry, Joseph</au><au>Doquet, Véronique</au><au>Grédiac, Michel</au><au>Chiaruttini, Vincent</au><au>Poncelet, Martin</au><au>Proudhon, Henry</au><au>Limodin, Nathalie</au><au>Réthoré, Julien</au><aucorp>GDR 3651 FATACRACK, CNRS</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-partner benchmark experiment of fatigue crack growth measurements</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>235</volume><spage>107157</spage><pages>107157-</pages><artnum>107157</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Benchmark fatigue crack propagation experiments on steel and aluminium.•Experiments performed by 8 teams participating to CNRS GDR 3651.•Specimens geometry leading to mixed-mode and to variation of small scale yielding conditions.•Curved crack paths.•Comparison of stress intensity factor range and crack growth rate estimation techniques. The design of reliable structures and the estimation of the residual fatigue life of industrial parts containing flaws or cracks rely on our ability to predict the propagation of fatigue cracks. Whereas in industrial component cracks might have a complex path due to geometry and loading, lab experiments used for identifying crack propagation law are often in pure mode I. The paper presents a synthesis of an experimental benchmark performed in the context of a French national research network. A sample has been designed to produce mixed-mode crack propagation and variation of small scale yielding conditions. Two geometries and two maximum load levels are defined for the two tested materials: a stainless steel and an aluminum alloy. Around ten participants performed experiments using their usual instrumentation. Among the eight possible parameter sets, three are selected for which detailed results are presented. A satisfying overall agreement is obtained. But, some discrepancies are evidenced due either to limitations of the instrumentation or simply because from one lab to the other the applied load is not exactly the same. It is thus concluded that one of the most important issue is boundary conditions, which is confirmed by numerical simulations.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2020.107157</doi><orcidid>https://orcid.org/0000-0002-4075-5577</orcidid><orcidid>https://orcid.org/0000-0003-0690-8549</orcidid><orcidid>https://orcid.org/0000-0003-4944-318X</orcidid><orcidid>https://orcid.org/0000-0002-7839-130X</orcidid><orcidid>https://orcid.org/0000-0003-0382-2897</orcidid><orcidid>https://orcid.org/0000-0002-9695-5535</orcidid><orcidid>https://orcid.org/0000-0002-1541-1588</orcidid><orcidid>https://orcid.org/0000-0002-9135-8387</orcidid><orcidid>https://orcid.org/0000-0003-0768-2676</orcidid><orcidid>https://orcid.org/0000-0002-3921-639X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2020-08, Vol.235, p.107157, Article 107157
issn 0013-7944
1873-7315
language eng
recordid cdi_hal_primary_oai_HAL_hal_02877391v1
source Access via ScienceDirect (Elsevier)
subjects Aluminum base alloys
Benchmarks
Boundary conditions
Chemical Sciences
Computer simulation
Crack growth rate
Crack path
Crack propagation
Digital Image Correlation
Engineering Sciences
Fatigue crack growth
Fatigue cracks
Fatigue failure
Fatigue life
Fracture mechanics
Instruments
Mixed mode
Physics
Propagation
Propagation modes
Stainless steels
Stress intensity factors
title Multi-partner benchmark experiment of fatigue crack growth measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-partner%20benchmark%20experiment%20of%20fatigue%20crack%20growth%20measurements&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Langlois,%20Rapha%C3%ABl&rft.aucorp=GDR%203651%20FATACRACK,%20CNRS&rft.date=2020-08-01&rft.volume=235&rft.spage=107157&rft.pages=107157-&rft.artnum=107157&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2020.107157&rft_dat=%3Cproquest_hal_p%3E2446727291%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446727291&rft_id=info:pmid/&rft_els_id=S0013794420307402&rfr_iscdi=true