Chaotic behavior in financial market volatility
The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we...
Gespeichert in:
Veröffentlicht in: | The journal of risk 2019-02, Vol.21 (3), p.27-53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 3 |
container_start_page | 27 |
container_title | The journal of risk |
container_volume | 21 |
creator | Litimi, Houda BenSaida, Ahmed Belkacem, Lotfi Abdallah, Oussama |
description | The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we present a robust method for the detection of chaos based on the Lyapunov exponent, which is consistent even for noisy and finite scalar time series. To revitalize the debate on nonlinear dynamics in financial markets, we show that the volatility is chaotic. Applications carried out on eight major daily volatility indexes support the presence of low-level chaos. Further, our out-of-sample analysis demonstrates the superiority of neural networks, compared with other chaotic maps, in the forecasting of market volatility. |
doi_str_mv | 10.21314/JOR.2018.400 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02869485v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02869485v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-44510faf51a29e944fa3ac57e4cfd82516bfbc67173d9d10094fd6a1e6b0b6f93</originalsourceid><addsrcrecordid>eNo9kEFLxDAUhHNQcF336L1XD-2-lyZpc1yKukphQdxzeE0TGq2ttKWw_96uK54Ghplh-Bi7R0g4pii2r4e3hAPmiQC4YisUSsbIEW_Y7Th-AAgJGldsWzTUT8FGlWtoDv0QhS7yoaPOBmqjLxo-3RTNfUtTaMN0umPXntrRbf50zY5Pj-_FPi4Pzy_Frowtz3CKhZAInrxE4tppITylZGXmhPV1ziWqyldWZZilta4RQAtfK0KnKqiU1-maPVx2G2rN9xCWIyfTUzD7XWnOHvBcaZHLGZdsfMnaoR_Hwfn_AoL5pWEWGuZMwyw00h__plM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chaotic behavior in financial market volatility</title><source>Emerald Journals</source><creator>Litimi, Houda ; BenSaida, Ahmed ; Belkacem, Lotfi ; Abdallah, Oussama</creator><creatorcontrib>Litimi, Houda ; BenSaida, Ahmed ; Belkacem, Lotfi ; Abdallah, Oussama</creatorcontrib><description>The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we present a robust method for the detection of chaos based on the Lyapunov exponent, which is consistent even for noisy and finite scalar time series. To revitalize the debate on nonlinear dynamics in financial markets, we show that the volatility is chaotic. Applications carried out on eight major daily volatility indexes support the presence of low-level chaos. Further, our out-of-sample analysis demonstrates the superiority of neural networks, compared with other chaotic maps, in the forecasting of market volatility.</description><identifier>ISSN: 1465-1211</identifier><identifier>ISSN: 1526-5943</identifier><identifier>DOI: 10.21314/JOR.2018.400</identifier><language>eng</language><publisher>Emerald</publisher><subject>Economics and Finance ; Humanities and Social Sciences ; Sociology</subject><ispartof>The journal of risk, 2019-02, Vol.21 (3), p.27-53</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-44510faf51a29e944fa3ac57e4cfd82516bfbc67173d9d10094fd6a1e6b0b6f93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://univ-rennes2.hal.science/hal-02869485$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Litimi, Houda</creatorcontrib><creatorcontrib>BenSaida, Ahmed</creatorcontrib><creatorcontrib>Belkacem, Lotfi</creatorcontrib><creatorcontrib>Abdallah, Oussama</creatorcontrib><title>Chaotic behavior in financial market volatility</title><title>The journal of risk</title><description>The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we present a robust method for the detection of chaos based on the Lyapunov exponent, which is consistent even for noisy and finite scalar time series. To revitalize the debate on nonlinear dynamics in financial markets, we show that the volatility is chaotic. Applications carried out on eight major daily volatility indexes support the presence of low-level chaos. Further, our out-of-sample analysis demonstrates the superiority of neural networks, compared with other chaotic maps, in the forecasting of market volatility.</description><subject>Economics and Finance</subject><subject>Humanities and Social Sciences</subject><subject>Sociology</subject><issn>1465-1211</issn><issn>1526-5943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAUhHNQcF336L1XD-2-lyZpc1yKukphQdxzeE0TGq2ttKWw_96uK54Ghplh-Bi7R0g4pii2r4e3hAPmiQC4YisUSsbIEW_Y7Th-AAgJGldsWzTUT8FGlWtoDv0QhS7yoaPOBmqjLxo-3RTNfUtTaMN0umPXntrRbf50zY5Pj-_FPi4Pzy_Frowtz3CKhZAInrxE4tppITylZGXmhPV1ziWqyldWZZilta4RQAtfK0KnKqiU1-maPVx2G2rN9xCWIyfTUzD7XWnOHvBcaZHLGZdsfMnaoR_Hwfn_AoL5pWEWGuZMwyw00h__plM8</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Litimi, Houda</creator><creator>BenSaida, Ahmed</creator><creator>Belkacem, Lotfi</creator><creator>Abdallah, Oussama</creator><general>Emerald</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope></search><sort><creationdate>20190201</creationdate><title>Chaotic behavior in financial market volatility</title><author>Litimi, Houda ; BenSaida, Ahmed ; Belkacem, Lotfi ; Abdallah, Oussama</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-44510faf51a29e944fa3ac57e4cfd82516bfbc67173d9d10094fd6a1e6b0b6f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Economics and Finance</topic><topic>Humanities and Social Sciences</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Litimi, Houda</creatorcontrib><creatorcontrib>BenSaida, Ahmed</creatorcontrib><creatorcontrib>Belkacem, Lotfi</creatorcontrib><creatorcontrib>Abdallah, Oussama</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>The journal of risk</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Litimi, Houda</au><au>BenSaida, Ahmed</au><au>Belkacem, Lotfi</au><au>Abdallah, Oussama</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic behavior in financial market volatility</atitle><jtitle>The journal of risk</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>21</volume><issue>3</issue><spage>27</spage><epage>53</epage><pages>27-53</pages><issn>1465-1211</issn><issn>1526-5943</issn><abstract>The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we present a robust method for the detection of chaos based on the Lyapunov exponent, which is consistent even for noisy and finite scalar time series. To revitalize the debate on nonlinear dynamics in financial markets, we show that the volatility is chaotic. Applications carried out on eight major daily volatility indexes support the presence of low-level chaos. Further, our out-of-sample analysis demonstrates the superiority of neural networks, compared with other chaotic maps, in the forecasting of market volatility.</abstract><pub>Emerald</pub><doi>10.21314/JOR.2018.400</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-1211 |
ispartof | The journal of risk, 2019-02, Vol.21 (3), p.27-53 |
issn | 1465-1211 1526-5943 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02869485v1 |
source | Emerald Journals |
subjects | Economics and Finance Humanities and Social Sciences Sociology |
title | Chaotic behavior in financial market volatility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20behavior%20in%20financial%20market%20volatility&rft.jtitle=The%20journal%20of%20risk&rft.au=Litimi,%20Houda&rft.date=2019-02-01&rft.volume=21&rft.issue=3&rft.spage=27&rft.epage=53&rft.pages=27-53&rft.issn=1465-1211&rft_id=info:doi/10.21314/JOR.2018.400&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02869485v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |