Chaotic behavior in financial market volatility

The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of risk 2019-02, Vol.21 (3), p.27-53
Hauptverfasser: Litimi, Houda, BenSaida, Ahmed, Belkacem, Lotfi, Abdallah, Oussama
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 3
container_start_page 27
container_title The journal of risk
container_volume 21
creator Litimi, Houda
BenSaida, Ahmed
Belkacem, Lotfi
Abdallah, Oussama
description The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we present a robust method for the detection of chaos based on the Lyapunov exponent, which is consistent even for noisy and finite scalar time series. To revitalize the debate on nonlinear dynamics in financial markets, we show that the volatility is chaotic. Applications carried out on eight major daily volatility indexes support the presence of low-level chaos. Further, our out-of-sample analysis demonstrates the superiority of neural networks, compared with other chaotic maps, in the forecasting of market volatility.
doi_str_mv 10.21314/JOR.2018.400
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02869485v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02869485v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-44510faf51a29e944fa3ac57e4cfd82516bfbc67173d9d10094fd6a1e6b0b6f93</originalsourceid><addsrcrecordid>eNo9kEFLxDAUhHNQcF336L1XD-2-lyZpc1yKukphQdxzeE0TGq2ttKWw_96uK54Ghplh-Bi7R0g4pii2r4e3hAPmiQC4YisUSsbIEW_Y7Th-AAgJGldsWzTUT8FGlWtoDv0QhS7yoaPOBmqjLxo-3RTNfUtTaMN0umPXntrRbf50zY5Pj-_FPi4Pzy_Frowtz3CKhZAInrxE4tppITylZGXmhPV1ziWqyldWZZilta4RQAtfK0KnKqiU1-maPVx2G2rN9xCWIyfTUzD7XWnOHvBcaZHLGZdsfMnaoR_Hwfn_AoL5pWEWGuZMwyw00h__plM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chaotic behavior in financial market volatility</title><source>Emerald Journals</source><creator>Litimi, Houda ; BenSaida, Ahmed ; Belkacem, Lotfi ; Abdallah, Oussama</creator><creatorcontrib>Litimi, Houda ; BenSaida, Ahmed ; Belkacem, Lotfi ; Abdallah, Oussama</creatorcontrib><description>The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we present a robust method for the detection of chaos based on the Lyapunov exponent, which is consistent even for noisy and finite scalar time series. To revitalize the debate on nonlinear dynamics in financial markets, we show that the volatility is chaotic. Applications carried out on eight major daily volatility indexes support the presence of low-level chaos. Further, our out-of-sample analysis demonstrates the superiority of neural networks, compared with other chaotic maps, in the forecasting of market volatility.</description><identifier>ISSN: 1465-1211</identifier><identifier>ISSN: 1526-5943</identifier><identifier>DOI: 10.21314/JOR.2018.400</identifier><language>eng</language><publisher>Emerald</publisher><subject>Economics and Finance ; Humanities and Social Sciences ; Sociology</subject><ispartof>The journal of risk, 2019-02, Vol.21 (3), p.27-53</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-44510faf51a29e944fa3ac57e4cfd82516bfbc67173d9d10094fd6a1e6b0b6f93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://univ-rennes2.hal.science/hal-02869485$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Litimi, Houda</creatorcontrib><creatorcontrib>BenSaida, Ahmed</creatorcontrib><creatorcontrib>Belkacem, Lotfi</creatorcontrib><creatorcontrib>Abdallah, Oussama</creatorcontrib><title>Chaotic behavior in financial market volatility</title><title>The journal of risk</title><description>The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we present a robust method for the detection of chaos based on the Lyapunov exponent, which is consistent even for noisy and finite scalar time series. To revitalize the debate on nonlinear dynamics in financial markets, we show that the volatility is chaotic. Applications carried out on eight major daily volatility indexes support the presence of low-level chaos. Further, our out-of-sample analysis demonstrates the superiority of neural networks, compared with other chaotic maps, in the forecasting of market volatility.</description><subject>Economics and Finance</subject><subject>Humanities and Social Sciences</subject><subject>Sociology</subject><issn>1465-1211</issn><issn>1526-5943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAUhHNQcF336L1XD-2-lyZpc1yKukphQdxzeE0TGq2ttKWw_96uK54Ghplh-Bi7R0g4pii2r4e3hAPmiQC4YisUSsbIEW_Y7Th-AAgJGldsWzTUT8FGlWtoDv0QhS7yoaPOBmqjLxo-3RTNfUtTaMN0umPXntrRbf50zY5Pj-_FPi4Pzy_Frowtz3CKhZAInrxE4tppITylZGXmhPV1ziWqyldWZZilta4RQAtfK0KnKqiU1-maPVx2G2rN9xCWIyfTUzD7XWnOHvBcaZHLGZdsfMnaoR_Hwfn_AoL5pWEWGuZMwyw00h__plM8</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Litimi, Houda</creator><creator>BenSaida, Ahmed</creator><creator>Belkacem, Lotfi</creator><creator>Abdallah, Oussama</creator><general>Emerald</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope></search><sort><creationdate>20190201</creationdate><title>Chaotic behavior in financial market volatility</title><author>Litimi, Houda ; BenSaida, Ahmed ; Belkacem, Lotfi ; Abdallah, Oussama</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-44510faf51a29e944fa3ac57e4cfd82516bfbc67173d9d10094fd6a1e6b0b6f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Economics and Finance</topic><topic>Humanities and Social Sciences</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Litimi, Houda</creatorcontrib><creatorcontrib>BenSaida, Ahmed</creatorcontrib><creatorcontrib>Belkacem, Lotfi</creatorcontrib><creatorcontrib>Abdallah, Oussama</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>The journal of risk</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Litimi, Houda</au><au>BenSaida, Ahmed</au><au>Belkacem, Lotfi</au><au>Abdallah, Oussama</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic behavior in financial market volatility</atitle><jtitle>The journal of risk</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>21</volume><issue>3</issue><spage>27</spage><epage>53</epage><pages>27-53</pages><issn>1465-1211</issn><issn>1526-5943</issn><abstract>The study of chaotic dynamics in financial time series suffers from the nature of the collected data, which is both finite and noisy. Moreover, researchers have become less enthusiastic since a large body of the literature found no evidence of chaotic dynamics in financial returns. In this paper, we present a robust method for the detection of chaos based on the Lyapunov exponent, which is consistent even for noisy and finite scalar time series. To revitalize the debate on nonlinear dynamics in financial markets, we show that the volatility is chaotic. Applications carried out on eight major daily volatility indexes support the presence of low-level chaos. Further, our out-of-sample analysis demonstrates the superiority of neural networks, compared with other chaotic maps, in the forecasting of market volatility.</abstract><pub>Emerald</pub><doi>10.21314/JOR.2018.400</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-1211
ispartof The journal of risk, 2019-02, Vol.21 (3), p.27-53
issn 1465-1211
1526-5943
language eng
recordid cdi_hal_primary_oai_HAL_hal_02869485v1
source Emerald Journals
subjects Economics and Finance
Humanities and Social Sciences
Sociology
title Chaotic behavior in financial market volatility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20behavior%20in%20financial%20market%20volatility&rft.jtitle=The%20journal%20of%20risk&rft.au=Litimi,%20Houda&rft.date=2019-02-01&rft.volume=21&rft.issue=3&rft.spage=27&rft.epage=53&rft.pages=27-53&rft.issn=1465-1211&rft_id=info:doi/10.21314/JOR.2018.400&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02869485v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true