Charge compensation mechanisms in Nd-doped UO2 samples for stoichiometric and hypo-stoichiometric conditions: Lack of miscibility gap

The evolution of the crystal lattice of samples made of UO2 doped with different concentrations of Nd in stoichiometric and hypo-stoichiometric conditions has been systematically studied by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The substitution of a trivalent cation for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2020-10, Vol.539, p.152276, Article 152276
Hauptverfasser: Herrero, Bernardo, Bès, René, Audubert, Fabienne, Clavier, Nicolas, Hunault, Myrtille O.J.Y., Baldinozzi, Gianguido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152276
container_title Journal of nuclear materials
container_volume 539
creator Herrero, Bernardo
Bès, René
Audubert, Fabienne
Clavier, Nicolas
Hunault, Myrtille O.J.Y.
Baldinozzi, Gianguido
description The evolution of the crystal lattice of samples made of UO2 doped with different concentrations of Nd in stoichiometric and hypo-stoichiometric conditions has been systematically studied by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The substitution of a trivalent cation for the U4+ initial position is responsible for creating local structural disorder and changes in the oxidation states. In this scenario, the lattice parameter is affected and the concentration of U5+ and formation of oxygen vacancies as well, since these are the mechanisms necessary to maintain the charge neutrality. The systematic oxidation of U4+ as predominant charge compensation mechanism over the formation of vacancies can be reduced by performing a thermal treatment under reducing conditions. This paper presents an experimental characterization of the uranium oxidation state mixture and local structure using XAS techniques in samples with chemical formula (U1-yNdy)O2-x, with y = 0.04, 0.17 and 0.25 (0
doi_str_mv 10.1016/j.jnucmat.2020.152276
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02867858v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311520304013</els_id><sourcerecordid>2449270066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-4d8c88a6205717b095e24b051c76ede1e7786c70b52a0f1134183ee525a7a3b3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVJoZu0P6Eg6CkHb0ayZWlzCWFpm8DSXNKzkKVxLHctOZI3sD-g_7teHHLIpaeBx3uPmfkI-cpgzYDVV_26Dwc7mGnNgc-a4FzWH8iKKVkWleJwRlYAnBclY-ITOc-5BwCxAbEif7edSU9IbRxGDNlMPgY6oO1M8HnI1Af6yxUujujo7wdOsxnGPWbaxkTzFL3tfBxwSt5SExztjmMs3uk2BudPvfma7oz9Q2NLB5-tb_zeT0f6ZMbP5GNr9hm_vM4L8vjj--P2rtg9_Lzf3u4KWzE1FZVTVilTcxCSyQY2AnnVgGBW1uiQoZSqthIawQ20jJVzqkQUXBhpyqa8IJdLbWf2ekx-MOmoo_H67nanTxpwVUsl1Aubvd8W75ji8wHzpPt4SGHeTvOq2nAJUNezSywum2LOCdu3Wgb6BEf3-hWOPsHRC5w5d7PkcL72xWPS8z8wWHQ-oZ20i_4_Df8A6IabSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449270066</pqid></control><display><type>article</type><title>Charge compensation mechanisms in Nd-doped UO2 samples for stoichiometric and hypo-stoichiometric conditions: Lack of miscibility gap</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Herrero, Bernardo ; Bès, René ; Audubert, Fabienne ; Clavier, Nicolas ; Hunault, Myrtille O.J.Y. ; Baldinozzi, Gianguido</creator><creatorcontrib>Herrero, Bernardo ; Bès, René ; Audubert, Fabienne ; Clavier, Nicolas ; Hunault, Myrtille O.J.Y. ; Baldinozzi, Gianguido</creatorcontrib><description>The evolution of the crystal lattice of samples made of UO2 doped with different concentrations of Nd in stoichiometric and hypo-stoichiometric conditions has been systematically studied by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The substitution of a trivalent cation for the U4+ initial position is responsible for creating local structural disorder and changes in the oxidation states. In this scenario, the lattice parameter is affected and the concentration of U5+ and formation of oxygen vacancies as well, since these are the mechanisms necessary to maintain the charge neutrality. The systematic oxidation of U4+ as predominant charge compensation mechanism over the formation of vacancies can be reduced by performing a thermal treatment under reducing conditions. This paper presents an experimental characterization of the uranium oxidation state mixture and local structure using XAS techniques in samples with chemical formula (U1-yNdy)O2-x, with y = 0.04, 0.17 and 0.25 (0&lt;x &lt; 0.038). In all cases, the deviation from the ideal oxygen stoichiometry of a perfect fluorite is small and the average long-range structure is not affected because also the cation substitution occurs randomly onto the metal sites of the ideal fluorite. However, the local distances of the first atomic shell depend on the actual local chemical composition. The atomic arrangement of the Nd neighbours differs from those of U, which is also sensitive to the overall concentration of Nd and the amount of vacancies. •Description of the solubility of the U1-yNdyO2±x system at room temperature.•Characterisation of the charge compensation mechanisms and local disorder for the U1-yNdyO2±x system.•Analysis of the crystal lattice of the U-Nd-O system assessed complementary by XRD and XAS.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2020.152276</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption spectroscopy ; Cations ; Chemical composition ; Chemical Sciences ; Compensation ; Crystal lattices ; Fluorite ; Heat treatment ; Hypo-stoichiometry ; Lattice vacancies ; Local structural disorder ; Material chemistry ; Miscibility ; Neodymium ; Oxidation ; Oxygen ; Radiochemistry ; Stoichiometry ; Substitutes ; Thermal annealing ; Uranium ; Uranium dioxide ; Valence ; X ray absorption ; X-ray absorption spectroscopy ; X-ray diffraction ; XAS</subject><ispartof>Journal of nuclear materials, 2020-10, Vol.539, p.152276, Article 152276</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-4d8c88a6205717b095e24b051c76ede1e7786c70b52a0f1134183ee525a7a3b3</citedby><cites>FETCH-LOGICAL-c418t-4d8c88a6205717b095e24b051c76ede1e7786c70b52a0f1134183ee525a7a3b3</cites><orcidid>0000-0001-8010-2661 ; 0000-0003-1034-1186 ; 0000-0002-6909-0716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311520304013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02867858$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrero, Bernardo</creatorcontrib><creatorcontrib>Bès, René</creatorcontrib><creatorcontrib>Audubert, Fabienne</creatorcontrib><creatorcontrib>Clavier, Nicolas</creatorcontrib><creatorcontrib>Hunault, Myrtille O.J.Y.</creatorcontrib><creatorcontrib>Baldinozzi, Gianguido</creatorcontrib><title>Charge compensation mechanisms in Nd-doped UO2 samples for stoichiometric and hypo-stoichiometric conditions: Lack of miscibility gap</title><title>Journal of nuclear materials</title><description>The evolution of the crystal lattice of samples made of UO2 doped with different concentrations of Nd in stoichiometric and hypo-stoichiometric conditions has been systematically studied by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The substitution of a trivalent cation for the U4+ initial position is responsible for creating local structural disorder and changes in the oxidation states. In this scenario, the lattice parameter is affected and the concentration of U5+ and formation of oxygen vacancies as well, since these are the mechanisms necessary to maintain the charge neutrality. The systematic oxidation of U4+ as predominant charge compensation mechanism over the formation of vacancies can be reduced by performing a thermal treatment under reducing conditions. This paper presents an experimental characterization of the uranium oxidation state mixture and local structure using XAS techniques in samples with chemical formula (U1-yNdy)O2-x, with y = 0.04, 0.17 and 0.25 (0&lt;x &lt; 0.038). In all cases, the deviation from the ideal oxygen stoichiometry of a perfect fluorite is small and the average long-range structure is not affected because also the cation substitution occurs randomly onto the metal sites of the ideal fluorite. However, the local distances of the first atomic shell depend on the actual local chemical composition. The atomic arrangement of the Nd neighbours differs from those of U, which is also sensitive to the overall concentration of Nd and the amount of vacancies. •Description of the solubility of the U1-yNdyO2±x system at room temperature.•Characterisation of the charge compensation mechanisms and local disorder for the U1-yNdyO2±x system.•Analysis of the crystal lattice of the U-Nd-O system assessed complementary by XRD and XAS.</description><subject>Absorption spectroscopy</subject><subject>Cations</subject><subject>Chemical composition</subject><subject>Chemical Sciences</subject><subject>Compensation</subject><subject>Crystal lattices</subject><subject>Fluorite</subject><subject>Heat treatment</subject><subject>Hypo-stoichiometry</subject><subject>Lattice vacancies</subject><subject>Local structural disorder</subject><subject>Material chemistry</subject><subject>Miscibility</subject><subject>Neodymium</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Radiochemistry</subject><subject>Stoichiometry</subject><subject>Substitutes</subject><subject>Thermal annealing</subject><subject>Uranium</subject><subject>Uranium dioxide</subject><subject>Valence</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray diffraction</subject><subject>XAS</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVJoZu0P6Eg6CkHb0ayZWlzCWFpm8DSXNKzkKVxLHctOZI3sD-g_7teHHLIpaeBx3uPmfkI-cpgzYDVV_26Dwc7mGnNgc-a4FzWH8iKKVkWleJwRlYAnBclY-ITOc-5BwCxAbEif7edSU9IbRxGDNlMPgY6oO1M8HnI1Af6yxUujujo7wdOsxnGPWbaxkTzFL3tfBxwSt5SExztjmMs3uk2BudPvfma7oz9Q2NLB5-tb_zeT0f6ZMbP5GNr9hm_vM4L8vjj--P2rtg9_Lzf3u4KWzE1FZVTVilTcxCSyQY2AnnVgGBW1uiQoZSqthIawQ20jJVzqkQUXBhpyqa8IJdLbWf2ekx-MOmoo_H67nanTxpwVUsl1Aubvd8W75ji8wHzpPt4SGHeTvOq2nAJUNezSywum2LOCdu3Wgb6BEf3-hWOPsHRC5w5d7PkcL72xWPS8z8wWHQ-oZ20i_4_Df8A6IabSw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Herrero, Bernardo</creator><creator>Bès, René</creator><creator>Audubert, Fabienne</creator><creator>Clavier, Nicolas</creator><creator>Hunault, Myrtille O.J.Y.</creator><creator>Baldinozzi, Gianguido</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8010-2661</orcidid><orcidid>https://orcid.org/0000-0003-1034-1186</orcidid><orcidid>https://orcid.org/0000-0002-6909-0716</orcidid></search><sort><creationdate>20201001</creationdate><title>Charge compensation mechanisms in Nd-doped UO2 samples for stoichiometric and hypo-stoichiometric conditions: Lack of miscibility gap</title><author>Herrero, Bernardo ; Bès, René ; Audubert, Fabienne ; Clavier, Nicolas ; Hunault, Myrtille O.J.Y. ; Baldinozzi, Gianguido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-4d8c88a6205717b095e24b051c76ede1e7786c70b52a0f1134183ee525a7a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectroscopy</topic><topic>Cations</topic><topic>Chemical composition</topic><topic>Chemical Sciences</topic><topic>Compensation</topic><topic>Crystal lattices</topic><topic>Fluorite</topic><topic>Heat treatment</topic><topic>Hypo-stoichiometry</topic><topic>Lattice vacancies</topic><topic>Local structural disorder</topic><topic>Material chemistry</topic><topic>Miscibility</topic><topic>Neodymium</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Radiochemistry</topic><topic>Stoichiometry</topic><topic>Substitutes</topic><topic>Thermal annealing</topic><topic>Uranium</topic><topic>Uranium dioxide</topic><topic>Valence</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray diffraction</topic><topic>XAS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrero, Bernardo</creatorcontrib><creatorcontrib>Bès, René</creatorcontrib><creatorcontrib>Audubert, Fabienne</creatorcontrib><creatorcontrib>Clavier, Nicolas</creatorcontrib><creatorcontrib>Hunault, Myrtille O.J.Y.</creatorcontrib><creatorcontrib>Baldinozzi, Gianguido</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrero, Bernardo</au><au>Bès, René</au><au>Audubert, Fabienne</au><au>Clavier, Nicolas</au><au>Hunault, Myrtille O.J.Y.</au><au>Baldinozzi, Gianguido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge compensation mechanisms in Nd-doped UO2 samples for stoichiometric and hypo-stoichiometric conditions: Lack of miscibility gap</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>539</volume><spage>152276</spage><pages>152276-</pages><artnum>152276</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The evolution of the crystal lattice of samples made of UO2 doped with different concentrations of Nd in stoichiometric and hypo-stoichiometric conditions has been systematically studied by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The substitution of a trivalent cation for the U4+ initial position is responsible for creating local structural disorder and changes in the oxidation states. In this scenario, the lattice parameter is affected and the concentration of U5+ and formation of oxygen vacancies as well, since these are the mechanisms necessary to maintain the charge neutrality. The systematic oxidation of U4+ as predominant charge compensation mechanism over the formation of vacancies can be reduced by performing a thermal treatment under reducing conditions. This paper presents an experimental characterization of the uranium oxidation state mixture and local structure using XAS techniques in samples with chemical formula (U1-yNdy)O2-x, with y = 0.04, 0.17 and 0.25 (0&lt;x &lt; 0.038). In all cases, the deviation from the ideal oxygen stoichiometry of a perfect fluorite is small and the average long-range structure is not affected because also the cation substitution occurs randomly onto the metal sites of the ideal fluorite. However, the local distances of the first atomic shell depend on the actual local chemical composition. The atomic arrangement of the Nd neighbours differs from those of U, which is also sensitive to the overall concentration of Nd and the amount of vacancies. •Description of the solubility of the U1-yNdyO2±x system at room temperature.•Characterisation of the charge compensation mechanisms and local disorder for the U1-yNdyO2±x system.•Analysis of the crystal lattice of the U-Nd-O system assessed complementary by XRD and XAS.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2020.152276</doi><orcidid>https://orcid.org/0000-0001-8010-2661</orcidid><orcidid>https://orcid.org/0000-0003-1034-1186</orcidid><orcidid>https://orcid.org/0000-0002-6909-0716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2020-10, Vol.539, p.152276, Article 152276
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_02867858v1
source Elsevier ScienceDirect Journals Complete
subjects Absorption spectroscopy
Cations
Chemical composition
Chemical Sciences
Compensation
Crystal lattices
Fluorite
Heat treatment
Hypo-stoichiometry
Lattice vacancies
Local structural disorder
Material chemistry
Miscibility
Neodymium
Oxidation
Oxygen
Radiochemistry
Stoichiometry
Substitutes
Thermal annealing
Uranium
Uranium dioxide
Valence
X ray absorption
X-ray absorption spectroscopy
X-ray diffraction
XAS
title Charge compensation mechanisms in Nd-doped UO2 samples for stoichiometric and hypo-stoichiometric conditions: Lack of miscibility gap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20compensation%20mechanisms%20in%20Nd-doped%20UO2%20samples%20for%20stoichiometric%20and%20hypo-stoichiometric%20conditions:%20Lack%20of%20miscibility%20gap&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Herrero,%20Bernardo&rft.date=2020-10-01&rft.volume=539&rft.spage=152276&rft.pages=152276-&rft.artnum=152276&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2020.152276&rft_dat=%3Cproquest_hal_p%3E2449270066%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449270066&rft_id=info:pmid/&rft_els_id=S0022311520304013&rfr_iscdi=true