Fast RT-LoG operator for scene text detection

This paper proposes a new real-time Laplacian of Gaussian (RT-LoG) operator for scene text detection. This method takes advantage of the Gaussian kernel distribution in the spatial/scale-space domains and kernel decomposition with the box filtering method. Two levels of optimization are given. The f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2021-02, Vol.18 (1), p.19-36
Hauptverfasser: Nguyen Dinh, Cong, Delalandre, Mathieu, Conte, Donatello, Pham, The Anh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 19
container_title Journal of real-time image processing
container_volume 18
creator Nguyen Dinh, Cong
Delalandre, Mathieu
Conte, Donatello
Pham, The Anh
description This paper proposes a new real-time Laplacian of Gaussian (RT-LoG) operator for scene text detection. This method takes advantage of the Gaussian kernel distribution in the spatial/scale-space domains and kernel decomposition with the box filtering method. Two levels of optimization are given. The first level of optimization within the spatial domain is obtained by box mutualization. The second level of optimization within the spatial/scale-space domains is performed using a mixed method for box selection. The proposed RT-LoG operator is evaluated on the ICDAR2017 RRC-MLT dataset in terms of robustness and time processing. The results are compared with the state-of-the-art real-time operators for scene text detection. The proposed operator appears as the top performance with the best trade-off between robustness and time processing. The proposed operator can support approximately 30 frames per second (FPS) up to the Quad-HD resolution on a regular CPU architecture with a low-level latency. In addition, the proposed operator can support the full pipeline for scene text detection. Our system is competitive with the top accurate systems of the literature while processing with a difference of two orders of magnitude in term of processing resources.
doi_str_mv 10.1007/s11554-020-00942-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02867207v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918675852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-8a00adfd2734049471035ccb5d4e910782b6bc7d2cd8546890f315d0816d5c643</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOCJw_RSTb_9liKtsKCIPUc0iSrLXVTk1T025u6Um8ehhmG33vMPIQuCdwQAHmbCOGcYaCAARpGsTxCI6IEwYqS5vgwA5yis5TWAEKKmo8QvjcpV08L3IZZFbY-mhxi1ZVK1ve-yv4zV85nb_Mq9OfopDOb5C9--xg9398tpnPcPs4eppMW27qRGSsDYFznqKwZsIZJAjW3dskd8w0BqehSLK101DrFmVANdDXhDhQRjlvB6jG6HnxfzUZv4-rNxC8dzErPJ63e74AqISnID1LYq4HdxvC-8ynrddjFvpynaVPellxxWig6UDaGlKLvDrYE9D5CPURYnEH_RKhlEdWDKBW4f_Hxz_of1TeoBXAT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918675852</pqid></control><display><type>article</type><title>Fast RT-LoG operator for scene text detection</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Nguyen Dinh, Cong ; Delalandre, Mathieu ; Conte, Donatello ; Pham, The Anh</creator><creatorcontrib>Nguyen Dinh, Cong ; Delalandre, Mathieu ; Conte, Donatello ; Pham, The Anh</creatorcontrib><description>This paper proposes a new real-time Laplacian of Gaussian (RT-LoG) operator for scene text detection. This method takes advantage of the Gaussian kernel distribution in the spatial/scale-space domains and kernel decomposition with the box filtering method. Two levels of optimization are given. The first level of optimization within the spatial domain is obtained by box mutualization. The second level of optimization within the spatial/scale-space domains is performed using a mixed method for box selection. The proposed RT-LoG operator is evaluated on the ICDAR2017 RRC-MLT dataset in terms of robustness and time processing. The results are compared with the state-of-the-art real-time operators for scene text detection. The proposed operator appears as the top performance with the best trade-off between robustness and time processing. The proposed operator can support approximately 30 frames per second (FPS) up to the Quad-HD resolution on a regular CPU architecture with a low-level latency. In addition, the proposed operator can support the full pipeline for scene text detection. Our system is competitive with the top accurate systems of the literature while processing with a difference of two orders of magnitude in term of processing resources.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-020-00942-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Approximation ; Cognitive science ; Computer Graphics ; Computer Science ; Computer Vision and Pattern Recognition ; Deadlines ; Energy consumption ; Frames per second ; Image Processing ; Image Processing and Computer Vision ; Localization ; Multimedia Information Systems ; Normal distribution ; Optimization ; Original Research Paper ; Pattern Recognition ; Performance evaluation ; Real time ; Robustness ; Signal and Image Processing ; Signal,Image and Speech Processing</subject><ispartof>Journal of real-time image processing, 2021-02, Vol.18 (1), p.19-36</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-8a00adfd2734049471035ccb5d4e910782b6bc7d2cd8546890f315d0816d5c643</citedby><cites>FETCH-LOGICAL-c397t-8a00adfd2734049471035ccb5d4e910782b6bc7d2cd8546890f315d0816d5c643</cites><orcidid>0000-0003-0798-5511 ; 0000-0003-4642-4768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-020-00942-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918675852?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02867207$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen Dinh, Cong</creatorcontrib><creatorcontrib>Delalandre, Mathieu</creatorcontrib><creatorcontrib>Conte, Donatello</creatorcontrib><creatorcontrib>Pham, The Anh</creatorcontrib><title>Fast RT-LoG operator for scene text detection</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>This paper proposes a new real-time Laplacian of Gaussian (RT-LoG) operator for scene text detection. This method takes advantage of the Gaussian kernel distribution in the spatial/scale-space domains and kernel decomposition with the box filtering method. Two levels of optimization are given. The first level of optimization within the spatial domain is obtained by box mutualization. The second level of optimization within the spatial/scale-space domains is performed using a mixed method for box selection. The proposed RT-LoG operator is evaluated on the ICDAR2017 RRC-MLT dataset in terms of robustness and time processing. The results are compared with the state-of-the-art real-time operators for scene text detection. The proposed operator appears as the top performance with the best trade-off between robustness and time processing. The proposed operator can support approximately 30 frames per second (FPS) up to the Quad-HD resolution on a regular CPU architecture with a low-level latency. In addition, the proposed operator can support the full pipeline for scene text detection. Our system is competitive with the top accurate systems of the literature while processing with a difference of two orders of magnitude in term of processing resources.</description><subject>Adaptation</subject><subject>Approximation</subject><subject>Cognitive science</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Deadlines</subject><subject>Energy consumption</subject><subject>Frames per second</subject><subject>Image Processing</subject><subject>Image Processing and Computer Vision</subject><subject>Localization</subject><subject>Multimedia Information Systems</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Original Research Paper</subject><subject>Pattern Recognition</subject><subject>Performance evaluation</subject><subject>Real time</subject><subject>Robustness</subject><subject>Signal and Image Processing</subject><subject>Signal,Image and Speech Processing</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOCJw_RSTb_9liKtsKCIPUc0iSrLXVTk1T025u6Um8ehhmG33vMPIQuCdwQAHmbCOGcYaCAARpGsTxCI6IEwYqS5vgwA5yis5TWAEKKmo8QvjcpV08L3IZZFbY-mhxi1ZVK1ve-yv4zV85nb_Mq9OfopDOb5C9--xg9398tpnPcPs4eppMW27qRGSsDYFznqKwZsIZJAjW3dskd8w0BqehSLK101DrFmVANdDXhDhQRjlvB6jG6HnxfzUZv4-rNxC8dzErPJ63e74AqISnID1LYq4HdxvC-8ynrddjFvpynaVPellxxWig6UDaGlKLvDrYE9D5CPURYnEH_RKhlEdWDKBW4f_Hxz_of1TeoBXAT</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Nguyen Dinh, Cong</creator><creator>Delalandre, Mathieu</creator><creator>Conte, Donatello</creator><creator>Pham, The Anh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0798-5511</orcidid><orcidid>https://orcid.org/0000-0003-4642-4768</orcidid></search><sort><creationdate>20210201</creationdate><title>Fast RT-LoG operator for scene text detection</title><author>Nguyen Dinh, Cong ; Delalandre, Mathieu ; Conte, Donatello ; Pham, The Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-8a00adfd2734049471035ccb5d4e910782b6bc7d2cd8546890f315d0816d5c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Approximation</topic><topic>Cognitive science</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Deadlines</topic><topic>Energy consumption</topic><topic>Frames per second</topic><topic>Image Processing</topic><topic>Image Processing and Computer Vision</topic><topic>Localization</topic><topic>Multimedia Information Systems</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Original Research Paper</topic><topic>Pattern Recognition</topic><topic>Performance evaluation</topic><topic>Real time</topic><topic>Robustness</topic><topic>Signal and Image Processing</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen Dinh, Cong</creatorcontrib><creatorcontrib>Delalandre, Mathieu</creatorcontrib><creatorcontrib>Conte, Donatello</creatorcontrib><creatorcontrib>Pham, The Anh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen Dinh, Cong</au><au>Delalandre, Mathieu</au><au>Conte, Donatello</au><au>Pham, The Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast RT-LoG operator for scene text detection</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>19</spage><epage>36</epage><pages>19-36</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>This paper proposes a new real-time Laplacian of Gaussian (RT-LoG) operator for scene text detection. This method takes advantage of the Gaussian kernel distribution in the spatial/scale-space domains and kernel decomposition with the box filtering method. Two levels of optimization are given. The first level of optimization within the spatial domain is obtained by box mutualization. The second level of optimization within the spatial/scale-space domains is performed using a mixed method for box selection. The proposed RT-LoG operator is evaluated on the ICDAR2017 RRC-MLT dataset in terms of robustness and time processing. The results are compared with the state-of-the-art real-time operators for scene text detection. The proposed operator appears as the top performance with the best trade-off between robustness and time processing. The proposed operator can support approximately 30 frames per second (FPS) up to the Quad-HD resolution on a regular CPU architecture with a low-level latency. In addition, the proposed operator can support the full pipeline for scene text detection. Our system is competitive with the top accurate systems of the literature while processing with a difference of two orders of magnitude in term of processing resources.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-020-00942-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0798-5511</orcidid><orcidid>https://orcid.org/0000-0003-4642-4768</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2021-02, Vol.18 (1), p.19-36
issn 1861-8200
1861-8219
language eng
recordid cdi_hal_primary_oai_HAL_hal_02867207v1
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Adaptation
Approximation
Cognitive science
Computer Graphics
Computer Science
Computer Vision and Pattern Recognition
Deadlines
Energy consumption
Frames per second
Image Processing
Image Processing and Computer Vision
Localization
Multimedia Information Systems
Normal distribution
Optimization
Original Research Paper
Pattern Recognition
Performance evaluation
Real time
Robustness
Signal and Image Processing
Signal,Image and Speech Processing
title Fast RT-LoG operator for scene text detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20RT-LoG%20operator%20for%20scene%20text%20detection&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Nguyen%20Dinh,%20Cong&rft.date=2021-02-01&rft.volume=18&rft.issue=1&rft.spage=19&rft.epage=36&rft.pages=19-36&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-020-00942-7&rft_dat=%3Cproquest_hal_p%3E2918675852%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918675852&rft_id=info:pmid/&rfr_iscdi=true