Study of thermomechanical coupling in carbon fibers woven‐ply reinforced thermoplastic laminates: Tensile behavior under radiant heat flux

The present work focuses on the thermomechanical behavior of carbon fibers woven‐ply polyphenylene sulfide (PPS thermoplastic)‐based composite materials subjected to the combined action of a tensile mechanical loading and one‐side heat flux (40‐60 kW/m2) representative of fire exposure. An experimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2020-09, Vol.41 (9), p.3552-3563
Hauptverfasser: Carpier, Yann, Vieille, Benoit, Coppalle, Alexis, Barbe, Fabrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3563
container_issue 9
container_start_page 3552
container_title Polymer composites
container_volume 41
creator Carpier, Yann
Vieille, Benoit
Coppalle, Alexis
Barbe, Fabrice
description The present work focuses on the thermomechanical behavior of carbon fibers woven‐ply polyphenylene sulfide (PPS thermoplastic)‐based composite materials subjected to the combined action of a tensile mechanical loading and one‐side heat flux (40‐60 kW/m2) representative of fire exposure. An experimental bench was specifically designed to provide an insight in the coupling between a medium heat flux thermal aggression and a tensile mechanical loading (either in monotonic or creep mode) within quasi‐isotropic C/PPS laminates. When subjected to a monotonic tensile loading, a 50% increase in the heat flux lead to a 50% increase of the temperature at the exposed surface resulting in a 10% decrease in the maximum load borne by the laminates. When subjected to a creep loading at 60 kW/m2 (worst case scenario with the cone calorimeter), by dividing by 2.6 the applied creep stress (from 31% to 12% of the ultimate strength σ0u), it results in a time‐to‐failure multiplied by 2.5. The temperature distribution on the exposed and back surfaces are measured to evaluate the influence of PPS matrix melting, pyrolysis, and fibers oxidation on the stress redistribution within the laminates plies. An experimental bench was specifically designed for simultaneously combining the action of a tensile mechanical loading and a one‐side heat flux provided by an electrical radiant heat source (representative of fire conditions). Using this specific device, the present study was aimed at evaluating the fire performance of carbon/polyphenylene sulfide (C/PPS) laminates through the investigation of weak coupling between thermal and mechanical behaviors in quasi‐isotropic carbon fibers reinforced PPS laminates.
doi_str_mv 10.1002/pc.25641
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02866799v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444433016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3641-5d7515db7284857fa07f9c56a58d218730e1f6f300677725037edee29143a2c3</originalsourceid><addsrcrecordid>eNp10U1rFDEYB_AgCq5V8CMEeqmHqXmZJDO9laVaYUHBvYds5omTkk2mycxu99YP4MHP6Cdx6hRv5vJA-PHneUHoPSWXlBD2cbCXTMiavkArKuqmIkK2L9GKMMWqhrfqNXpTyt0sqZR8hX5-H6fuhJPDYw95n_ZgexO9NQHbNA3Bxx_YR2xN3qWInd9BLviYDhB_P_4awgln8NGlbKF7ThiCKaO3OJi9j2aEcoW3EIsPgHfQm4NPGU-xg4yz6byJI-7BjNiF6eEteuVMKPDuuZ6h7aeb7fq22nz9_GV9vaksnyerRKcEFd1OsaZuhHKGKNdaIY1oOkYbxQlQJx0nRCqlmCBcQQfAWlpzwyw_Qx-W2N4EPWS_N_mkk_H69nqjn_4Ia6RUbXugsz1f7JDT_QRl1HdpynHuTrN6fpwTKmd1sSibUykZ3L9YSvTTWfRg9d-zzLRa6HHeyOm_Tn9bL_4PHvyPlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444433016</pqid></control><display><type>article</type><title>Study of thermomechanical coupling in carbon fibers woven‐ply reinforced thermoplastic laminates: Tensile behavior under radiant heat flux</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carpier, Yann ; Vieille, Benoit ; Coppalle, Alexis ; Barbe, Fabrice</creator><creatorcontrib>Carpier, Yann ; Vieille, Benoit ; Coppalle, Alexis ; Barbe, Fabrice</creatorcontrib><description>The present work focuses on the thermomechanical behavior of carbon fibers woven‐ply polyphenylene sulfide (PPS thermoplastic)‐based composite materials subjected to the combined action of a tensile mechanical loading and one‐side heat flux (40‐60 kW/m2) representative of fire exposure. An experimental bench was specifically designed to provide an insight in the coupling between a medium heat flux thermal aggression and a tensile mechanical loading (either in monotonic or creep mode) within quasi‐isotropic C/PPS laminates. When subjected to a monotonic tensile loading, a 50% increase in the heat flux lead to a 50% increase of the temperature at the exposed surface resulting in a 10% decrease in the maximum load borne by the laminates. When subjected to a creep loading at 60 kW/m2 (worst case scenario with the cone calorimeter), by dividing by 2.6 the applied creep stress (from 31% to 12% of the ultimate strength σ0u), it results in a time‐to‐failure multiplied by 2.5. The temperature distribution on the exposed and back surfaces are measured to evaluate the influence of PPS matrix melting, pyrolysis, and fibers oxidation on the stress redistribution within the laminates plies. An experimental bench was specifically designed for simultaneously combining the action of a tensile mechanical loading and a one‐side heat flux provided by an electrical radiant heat source (representative of fire conditions). Using this specific device, the present study was aimed at evaluating the fire performance of carbon/polyphenylene sulfide (C/PPS) laminates through the investigation of weak coupling between thermal and mechanical behaviors in quasi‐isotropic carbon fibers reinforced PPS laminates.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.25641</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Carbon fiber reinforced plastics ; Carbon fibers ; Composite materials ; Condensed Matter ; Cone calorimeters ; Coupling ; Creep (materials) ; damage ; Fire exposure ; Heat ; Heat flux ; Heat transfer ; Laminates ; Layers ; Materials and structures in mechanics ; Materials Science ; Mechanics ; Mechanics of materials ; Oxidation ; Physics ; Polymer matrix composites ; Polyphenylene sulfides ; Pyrolysis ; Temperature distribution ; thermal decomposition ; thermomechanical coupling ; Thermomechanical properties ; thermoplastic ; Ultimate tensile strength</subject><ispartof>Polymer composites, 2020-09, Vol.41 (9), p.3552-3563</ispartof><rights>2020 Society of Plastics Engineers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3641-5d7515db7284857fa07f9c56a58d218730e1f6f300677725037edee29143a2c3</citedby><cites>FETCH-LOGICAL-c3641-5d7515db7284857fa07f9c56a58d218730e1f6f300677725037edee29143a2c3</cites><orcidid>0000-0003-4528-7167 ; 0000-0001-5819-1696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.25641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.25641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02866799$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpier, Yann</creatorcontrib><creatorcontrib>Vieille, Benoit</creatorcontrib><creatorcontrib>Coppalle, Alexis</creatorcontrib><creatorcontrib>Barbe, Fabrice</creatorcontrib><title>Study of thermomechanical coupling in carbon fibers woven‐ply reinforced thermoplastic laminates: Tensile behavior under radiant heat flux</title><title>Polymer composites</title><description>The present work focuses on the thermomechanical behavior of carbon fibers woven‐ply polyphenylene sulfide (PPS thermoplastic)‐based composite materials subjected to the combined action of a tensile mechanical loading and one‐side heat flux (40‐60 kW/m2) representative of fire exposure. An experimental bench was specifically designed to provide an insight in the coupling between a medium heat flux thermal aggression and a tensile mechanical loading (either in monotonic or creep mode) within quasi‐isotropic C/PPS laminates. When subjected to a monotonic tensile loading, a 50% increase in the heat flux lead to a 50% increase of the temperature at the exposed surface resulting in a 10% decrease in the maximum load borne by the laminates. When subjected to a creep loading at 60 kW/m2 (worst case scenario with the cone calorimeter), by dividing by 2.6 the applied creep stress (from 31% to 12% of the ultimate strength σ0u), it results in a time‐to‐failure multiplied by 2.5. The temperature distribution on the exposed and back surfaces are measured to evaluate the influence of PPS matrix melting, pyrolysis, and fibers oxidation on the stress redistribution within the laminates plies. An experimental bench was specifically designed for simultaneously combining the action of a tensile mechanical loading and a one‐side heat flux provided by an electrical radiant heat source (representative of fire conditions). Using this specific device, the present study was aimed at evaluating the fire performance of carbon/polyphenylene sulfide (C/PPS) laminates through the investigation of weak coupling between thermal and mechanical behaviors in quasi‐isotropic carbon fibers reinforced PPS laminates.</description><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Condensed Matter</subject><subject>Cone calorimeters</subject><subject>Coupling</subject><subject>Creep (materials)</subject><subject>damage</subject><subject>Fire exposure</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Laminates</subject><subject>Layers</subject><subject>Materials and structures in mechanics</subject><subject>Materials Science</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Polymer matrix composites</subject><subject>Polyphenylene sulfides</subject><subject>Pyrolysis</subject><subject>Temperature distribution</subject><subject>thermal decomposition</subject><subject>thermomechanical coupling</subject><subject>Thermomechanical properties</subject><subject>thermoplastic</subject><subject>Ultimate tensile strength</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10U1rFDEYB_AgCq5V8CMEeqmHqXmZJDO9laVaYUHBvYds5omTkk2mycxu99YP4MHP6Cdx6hRv5vJA-PHneUHoPSWXlBD2cbCXTMiavkArKuqmIkK2L9GKMMWqhrfqNXpTyt0sqZR8hX5-H6fuhJPDYw95n_ZgexO9NQHbNA3Bxx_YR2xN3qWInd9BLviYDhB_P_4awgln8NGlbKF7ThiCKaO3OJi9j2aEcoW3EIsPgHfQm4NPGU-xg4yz6byJI-7BjNiF6eEteuVMKPDuuZ6h7aeb7fq22nz9_GV9vaksnyerRKcEFd1OsaZuhHKGKNdaIY1oOkYbxQlQJx0nRCqlmCBcQQfAWlpzwyw_Qx-W2N4EPWS_N_mkk_H69nqjn_4Ia6RUbXugsz1f7JDT_QRl1HdpynHuTrN6fpwTKmd1sSibUykZ3L9YSvTTWfRg9d-zzLRa6HHeyOm_Tn9bL_4PHvyPlg</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Carpier, Yann</creator><creator>Vieille, Benoit</creator><creator>Coppalle, Alexis</creator><creator>Barbe, Fabrice</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4528-7167</orcidid><orcidid>https://orcid.org/0000-0001-5819-1696</orcidid></search><sort><creationdate>202009</creationdate><title>Study of thermomechanical coupling in carbon fibers woven‐ply reinforced thermoplastic laminates: Tensile behavior under radiant heat flux</title><author>Carpier, Yann ; Vieille, Benoit ; Coppalle, Alexis ; Barbe, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3641-5d7515db7284857fa07f9c56a58d218730e1f6f300677725037edee29143a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Condensed Matter</topic><topic>Cone calorimeters</topic><topic>Coupling</topic><topic>Creep (materials)</topic><topic>damage</topic><topic>Fire exposure</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Laminates</topic><topic>Layers</topic><topic>Materials and structures in mechanics</topic><topic>Materials Science</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Polymer matrix composites</topic><topic>Polyphenylene sulfides</topic><topic>Pyrolysis</topic><topic>Temperature distribution</topic><topic>thermal decomposition</topic><topic>thermomechanical coupling</topic><topic>Thermomechanical properties</topic><topic>thermoplastic</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpier, Yann</creatorcontrib><creatorcontrib>Vieille, Benoit</creatorcontrib><creatorcontrib>Coppalle, Alexis</creatorcontrib><creatorcontrib>Barbe, Fabrice</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpier, Yann</au><au>Vieille, Benoit</au><au>Coppalle, Alexis</au><au>Barbe, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of thermomechanical coupling in carbon fibers woven‐ply reinforced thermoplastic laminates: Tensile behavior under radiant heat flux</atitle><jtitle>Polymer composites</jtitle><date>2020-09</date><risdate>2020</risdate><volume>41</volume><issue>9</issue><spage>3552</spage><epage>3563</epage><pages>3552-3563</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The present work focuses on the thermomechanical behavior of carbon fibers woven‐ply polyphenylene sulfide (PPS thermoplastic)‐based composite materials subjected to the combined action of a tensile mechanical loading and one‐side heat flux (40‐60 kW/m2) representative of fire exposure. An experimental bench was specifically designed to provide an insight in the coupling between a medium heat flux thermal aggression and a tensile mechanical loading (either in monotonic or creep mode) within quasi‐isotropic C/PPS laminates. When subjected to a monotonic tensile loading, a 50% increase in the heat flux lead to a 50% increase of the temperature at the exposed surface resulting in a 10% decrease in the maximum load borne by the laminates. When subjected to a creep loading at 60 kW/m2 (worst case scenario with the cone calorimeter), by dividing by 2.6 the applied creep stress (from 31% to 12% of the ultimate strength σ0u), it results in a time‐to‐failure multiplied by 2.5. The temperature distribution on the exposed and back surfaces are measured to evaluate the influence of PPS matrix melting, pyrolysis, and fibers oxidation on the stress redistribution within the laminates plies. An experimental bench was specifically designed for simultaneously combining the action of a tensile mechanical loading and a one‐side heat flux provided by an electrical radiant heat source (representative of fire conditions). Using this specific device, the present study was aimed at evaluating the fire performance of carbon/polyphenylene sulfide (C/PPS) laminates through the investigation of weak coupling between thermal and mechanical behaviors in quasi‐isotropic carbon fibers reinforced PPS laminates.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.25641</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4528-7167</orcidid><orcidid>https://orcid.org/0000-0001-5819-1696</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2020-09, Vol.41 (9), p.3552-3563
issn 0272-8397
1548-0569
language eng
recordid cdi_hal_primary_oai_HAL_hal_02866799v1
source Wiley Online Library Journals Frontfile Complete
subjects Carbon fiber reinforced plastics
Carbon fibers
Composite materials
Condensed Matter
Cone calorimeters
Coupling
Creep (materials)
damage
Fire exposure
Heat
Heat flux
Heat transfer
Laminates
Layers
Materials and structures in mechanics
Materials Science
Mechanics
Mechanics of materials
Oxidation
Physics
Polymer matrix composites
Polyphenylene sulfides
Pyrolysis
Temperature distribution
thermal decomposition
thermomechanical coupling
Thermomechanical properties
thermoplastic
Ultimate tensile strength
title Study of thermomechanical coupling in carbon fibers woven‐ply reinforced thermoplastic laminates: Tensile behavior under radiant heat flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20thermomechanical%20coupling%20in%20carbon%20fibers%20woven%E2%80%90ply%20reinforced%20thermoplastic%20laminates:%20Tensile%20behavior%20under%20radiant%20heat%20flux&rft.jtitle=Polymer%20composites&rft.au=Carpier,%20Yann&rft.date=2020-09&rft.volume=41&rft.issue=9&rft.spage=3552&rft.epage=3563&rft.pages=3552-3563&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.25641&rft_dat=%3Cproquest_hal_p%3E2444433016%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444433016&rft_id=info:pmid/&rfr_iscdi=true