A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach

Artificial enzymes represent an attractive alternative to design abiotic biocatalysis. EcNikA-Ru1, an artificial metalloenzyme developed by embedding a ruthenium-based catalyst into the cavity of the periplasmic nickel-binding protein NikA, was found to efficiently and selectively transform certain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-05, Vol.10 (10), p.5631-5645
Hauptverfasser: Lopez, Sarah, Mayes, David Michael, Crouzy, Serge, Cavazza, Christine, Leprêtre, Chloé, Moreau, Yohann, Burzlaff, Nicolai, Marchi-Delapierre, Caroline, Ménage, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5645
container_issue 10
container_start_page 5631
container_title ACS catalysis
container_volume 10
creator Lopez, Sarah
Mayes, David Michael
Crouzy, Serge
Cavazza, Christine
Leprêtre, Chloé
Moreau, Yohann
Burzlaff, Nicolai
Marchi-Delapierre, Caroline
Ménage, Stéphane
description Artificial enzymes represent an attractive alternative to design abiotic biocatalysis. EcNikA-Ru1, an artificial metalloenzyme developed by embedding a ruthenium-based catalyst into the cavity of the periplasmic nickel-binding protein NikA, was found to efficiently and selectively transform certain alkenes. The objective of this study was to provide a rationale on the enzymatic function and the unexpected substrate-dependent chemoselectivity of EcNikA-Ru1 thanks to a dual experimental/computational study. We observed that the de novo active site allows the formation of the terminal oxidant via the formation of a ruthenium aquo species that subsequently reacts with the hypervalent iodine of phenyl iodide diacetic acid. The oxidation process relies on a RuIVO pathway via a two-step reaction with a radical intermediate, resulting in the formation of either a chlorohydrin or an epoxide. The results emphasize the impact of the protein scaffold on the kinetics of the reaction, through (i) the promotion of the starting oxidizing species via the exchange of a CO ligand with a water molecule; and (ii) the control of the substrate orientation on the intermediate structures, formed after the RuIVO attack. When a Cα attack is preferred, chlorohydrins are formed while an attack on Cβ leads to an epoxide. This work provides evidence that artificial enzymes mimic the behavior of their natural counterparts.
doi_str_mv 10.1021/acscatal.9b04904
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02865406v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c401621781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-c3b0ca1603e20e00a1ceab860b2f71d1d19751efc371a96f562b926ad8b8db3c3</originalsourceid><addsrcrecordid>eNp1UVFrwjAQLmODifN9j3kdrJq0TWz3VtTNgUMQfS7X9EojtS1JFP0p-7eLqGMvyz0kd9_3XY77PO-Z0SGjARuBNBIs1MMkp1FCozuvFzDOfR6F_P7P-9EbGLOl7kRcxGPa875T8oWygkYZqyRZgVVtAzWStOt0C7IiKzygKxTEVkg2DR47lNalkwp3rcHaZeqg7Im0JYGGpNqqUkkFNVnt_Sl22BTYWLI8qgIMvpGUTPcOnLk-Wu0cBPVoXWGr0Q3ggNvHT95DCbXBwfXue5v32Xoy9xfLj89JuvAh5ML6MsypBCZoiAFFSoFJhDwWNA_KMStcJGPOsJThmEEiSi6CPAkEFHEeF3kow773culbQZ11biTQp6wFlc3TRXau0SAWPKLiwByXXrhSt8ZoLH8FjGZnJ7KbE9nVCSd5vUgckm3bvXbbNf_TfwDu5I8a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach</title><source>ACS Publications</source><creator>Lopez, Sarah ; Mayes, David Michael ; Crouzy, Serge ; Cavazza, Christine ; Leprêtre, Chloé ; Moreau, Yohann ; Burzlaff, Nicolai ; Marchi-Delapierre, Caroline ; Ménage, Stéphane</creator><creatorcontrib>Lopez, Sarah ; Mayes, David Michael ; Crouzy, Serge ; Cavazza, Christine ; Leprêtre, Chloé ; Moreau, Yohann ; Burzlaff, Nicolai ; Marchi-Delapierre, Caroline ; Ménage, Stéphane</creatorcontrib><description>Artificial enzymes represent an attractive alternative to design abiotic biocatalysis. EcNikA-Ru1, an artificial metalloenzyme developed by embedding a ruthenium-based catalyst into the cavity of the periplasmic nickel-binding protein NikA, was found to efficiently and selectively transform certain alkenes. The objective of this study was to provide a rationale on the enzymatic function and the unexpected substrate-dependent chemoselectivity of EcNikA-Ru1 thanks to a dual experimental/computational study. We observed that the de novo active site allows the formation of the terminal oxidant via the formation of a ruthenium aquo species that subsequently reacts with the hypervalent iodine of phenyl iodide diacetic acid. The oxidation process relies on a RuIVO pathway via a two-step reaction with a radical intermediate, resulting in the formation of either a chlorohydrin or an epoxide. The results emphasize the impact of the protein scaffold on the kinetics of the reaction, through (i) the promotion of the starting oxidizing species via the exchange of a CO ligand with a water molecule; and (ii) the control of the substrate orientation on the intermediate structures, formed after the RuIVO attack. When a Cα attack is preferred, chlorohydrins are formed while an attack on Cβ leads to an epoxide. This work provides evidence that artificial enzymes mimic the behavior of their natural counterparts.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b04904</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences ; Cheminformatics</subject><ispartof>ACS catalysis, 2020-05, Vol.10 (10), p.5631-5645</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-c3b0ca1603e20e00a1ceab860b2f71d1d19751efc371a96f562b926ad8b8db3c3</citedby><cites>FETCH-LOGICAL-a356t-c3b0ca1603e20e00a1ceab860b2f71d1d19751efc371a96f562b926ad8b8db3c3</cites><orcidid>0000-0001-9063-555X ; 0000-0003-4512-8836 ; 0000-0002-3907-4483 ; 0000-0002-9370-6728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.9b04904$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.9b04904$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02865406$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez, Sarah</creatorcontrib><creatorcontrib>Mayes, David Michael</creatorcontrib><creatorcontrib>Crouzy, Serge</creatorcontrib><creatorcontrib>Cavazza, Christine</creatorcontrib><creatorcontrib>Leprêtre, Chloé</creatorcontrib><creatorcontrib>Moreau, Yohann</creatorcontrib><creatorcontrib>Burzlaff, Nicolai</creatorcontrib><creatorcontrib>Marchi-Delapierre, Caroline</creatorcontrib><creatorcontrib>Ménage, Stéphane</creatorcontrib><title>A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Artificial enzymes represent an attractive alternative to design abiotic biocatalysis. EcNikA-Ru1, an artificial metalloenzyme developed by embedding a ruthenium-based catalyst into the cavity of the periplasmic nickel-binding protein NikA, was found to efficiently and selectively transform certain alkenes. The objective of this study was to provide a rationale on the enzymatic function and the unexpected substrate-dependent chemoselectivity of EcNikA-Ru1 thanks to a dual experimental/computational study. We observed that the de novo active site allows the formation of the terminal oxidant via the formation of a ruthenium aquo species that subsequently reacts with the hypervalent iodine of phenyl iodide diacetic acid. The oxidation process relies on a RuIVO pathway via a two-step reaction with a radical intermediate, resulting in the formation of either a chlorohydrin or an epoxide. The results emphasize the impact of the protein scaffold on the kinetics of the reaction, through (i) the promotion of the starting oxidizing species via the exchange of a CO ligand with a water molecule; and (ii) the control of the substrate orientation on the intermediate structures, formed after the RuIVO attack. When a Cα attack is preferred, chlorohydrins are formed while an attack on Cβ leads to an epoxide. This work provides evidence that artificial enzymes mimic the behavior of their natural counterparts.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Cheminformatics</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UVFrwjAQLmODifN9j3kdrJq0TWz3VtTNgUMQfS7X9EojtS1JFP0p-7eLqGMvyz0kd9_3XY77PO-Z0SGjARuBNBIs1MMkp1FCozuvFzDOfR6F_P7P-9EbGLOl7kRcxGPa875T8oWygkYZqyRZgVVtAzWStOt0C7IiKzygKxTEVkg2DR47lNalkwp3rcHaZeqg7Im0JYGGpNqqUkkFNVnt_Sl22BTYWLI8qgIMvpGUTPcOnLk-Wu0cBPVoXWGr0Q3ggNvHT95DCbXBwfXue5v32Xoy9xfLj89JuvAh5ML6MsypBCZoiAFFSoFJhDwWNA_KMStcJGPOsJThmEEiSi6CPAkEFHEeF3kow773culbQZ11biTQp6wFlc3TRXau0SAWPKLiwByXXrhSt8ZoLH8FjGZnJ7KbE9nVCSd5vUgckm3bvXbbNf_TfwDu5I8a</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Lopez, Sarah</creator><creator>Mayes, David Michael</creator><creator>Crouzy, Serge</creator><creator>Cavazza, Christine</creator><creator>Leprêtre, Chloé</creator><creator>Moreau, Yohann</creator><creator>Burzlaff, Nicolai</creator><creator>Marchi-Delapierre, Caroline</creator><creator>Ménage, Stéphane</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9063-555X</orcidid><orcidid>https://orcid.org/0000-0003-4512-8836</orcidid><orcidid>https://orcid.org/0000-0002-3907-4483</orcidid><orcidid>https://orcid.org/0000-0002-9370-6728</orcidid></search><sort><creationdate>20200515</creationdate><title>A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach</title><author>Lopez, Sarah ; Mayes, David Michael ; Crouzy, Serge ; Cavazza, Christine ; Leprêtre, Chloé ; Moreau, Yohann ; Burzlaff, Nicolai ; Marchi-Delapierre, Caroline ; Ménage, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-c3b0ca1603e20e00a1ceab860b2f71d1d19751efc371a96f562b926ad8b8db3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Cheminformatics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Sarah</creatorcontrib><creatorcontrib>Mayes, David Michael</creatorcontrib><creatorcontrib>Crouzy, Serge</creatorcontrib><creatorcontrib>Cavazza, Christine</creatorcontrib><creatorcontrib>Leprêtre, Chloé</creatorcontrib><creatorcontrib>Moreau, Yohann</creatorcontrib><creatorcontrib>Burzlaff, Nicolai</creatorcontrib><creatorcontrib>Marchi-Delapierre, Caroline</creatorcontrib><creatorcontrib>Ménage, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Sarah</au><au>Mayes, David Michael</au><au>Crouzy, Serge</au><au>Cavazza, Christine</au><au>Leprêtre, Chloé</au><au>Moreau, Yohann</au><au>Burzlaff, Nicolai</au><au>Marchi-Delapierre, Caroline</au><au>Ménage, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>5631</spage><epage>5645</epage><pages>5631-5645</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Artificial enzymes represent an attractive alternative to design abiotic biocatalysis. EcNikA-Ru1, an artificial metalloenzyme developed by embedding a ruthenium-based catalyst into the cavity of the periplasmic nickel-binding protein NikA, was found to efficiently and selectively transform certain alkenes. The objective of this study was to provide a rationale on the enzymatic function and the unexpected substrate-dependent chemoselectivity of EcNikA-Ru1 thanks to a dual experimental/computational study. We observed that the de novo active site allows the formation of the terminal oxidant via the formation of a ruthenium aquo species that subsequently reacts with the hypervalent iodine of phenyl iodide diacetic acid. The oxidation process relies on a RuIVO pathway via a two-step reaction with a radical intermediate, resulting in the formation of either a chlorohydrin or an epoxide. The results emphasize the impact of the protein scaffold on the kinetics of the reaction, through (i) the promotion of the starting oxidizing species via the exchange of a CO ligand with a water molecule; and (ii) the control of the substrate orientation on the intermediate structures, formed after the RuIVO attack. When a Cα attack is preferred, chlorohydrins are formed while an attack on Cβ leads to an epoxide. This work provides evidence that artificial enzymes mimic the behavior of their natural counterparts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b04904</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9063-555X</orcidid><orcidid>https://orcid.org/0000-0003-4512-8836</orcidid><orcidid>https://orcid.org/0000-0002-3907-4483</orcidid><orcidid>https://orcid.org/0000-0002-9370-6728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-05, Vol.10 (10), p.5631-5645
issn 2155-5435
2155-5435
language eng
recordid cdi_hal_primary_oai_HAL_hal_02865406v1
source ACS Publications
subjects Catalysis
Chemical Sciences
Cheminformatics
title A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mechanistic%20Rationale%20Approach%20Revealed%20the%20Unexpected%20Chemoselectivity%20of%20an%20Artificial%20Ru-Dependent%20Oxidase:%20A%20Dual%20Experimental/Theoretical%20Approach&rft.jtitle=ACS%20catalysis&rft.au=Lopez,%20Sarah&rft.date=2020-05-15&rft.volume=10&rft.issue=10&rft.spage=5631&rft.epage=5645&rft.pages=5631-5645&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b04904&rft_dat=%3Cacs_hal_p%3Ec401621781%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true