Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis

Understanding the evolution of liquid–liquid dispersion is a key factor in operation and control of emulsification process. A dynamic tracking of an evolving droplet size distribution (DSD) in a dilute oil-in water (O/W) emulsion has been developed with the implementation of an in situ video probe d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2010-12, Vol.165 (3), p.946-957
Hauptverfasser: Khalil, Abir, Puel, François, Chevalier, Yves, Galvan, Jean-Marc, Rivoire, Alain, Klein, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 957
container_issue 3
container_start_page 946
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 165
creator Khalil, Abir
Puel, François
Chevalier, Yves
Galvan, Jean-Marc
Rivoire, Alain
Klein, Jean-Paul
description Understanding the evolution of liquid–liquid dispersion is a key factor in operation and control of emulsification process. A dynamic tracking of an evolving droplet size distribution (DSD) in a dilute oil-in water (O/W) emulsion has been developed with the implementation of an in situ video probe dipped in a stirred vessel and coupled with an image analysis treatment. The optical probe allows real time recording of 2D images of the droplets. Recent image analysis software developed originally for an application in micromechanics was adapted and applied in delayed time on the video sequences regularly recorded. It automatically provided a measurement of the diameter of several thousands of droplets in the range of 10–100 μm. The relative accuracy on the droplet number average diameter was 10%. This measurement technique was then used to investigate at lab scale in a stirred vessel and in warm conditions the influence of several process parameters on the evolution with time of a dispersed melted cosmetic ingredient in a water solution containing a surfactant. The specific power input of stirring was the main parameter acting on the reduction of the mean droplet diameter and of the width of the DSD owing to its action on the droplet break-up mechanism. The surfactant concentration was a parameter of secondary relevance on the DSD probably due to the reduction of the coalescence rate and to a faster stabilization of the O/W interface. The use of a flat blade propeller instead of a Rushton turbine was preferable for the production of a narrower DSD. Finally the time required to reach equilibrium was found higher by a factor of 3–4 than predicted in the literature.
doi_str_mv 10.1016/j.cej.2010.10.031
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02844838v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894710009514</els_id><sourcerecordid>856778953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-c70816cdbfd5801facfb070be5022cff4f3336a9d5ab490ea81efe147d7aea983</originalsourceid><addsrcrecordid>eNp9UcuOFCEUrRhNHEc_wB0bY1xUC0U9qLiaTNQx6cSFuiYUXGZup7poudCT9gP8bqnpySxdAed1gVNVbwXfCC76j7uNhd2m4Q_nDZfiWXUh1CBr2YjmedlL1dVqbIeX1SuiHee8H8V4Uf39kbI7seCZi-EwQ2KEf4A5pBRxygnDwlyOuNwyszDY55nQozUPxCEGC0Qs08rjUrwpsyM6CCs3AbMhl1DH7jHdrQEmp7AvZstwb26hQGY-EdLr6oU3M8Gbx_Wy-vXl88_rm3r7_eu366ttbeUoU20HrkRv3eRdp7jwxvqJD3yCjjeN9b71UsrejK4zUztyMEqAB9EObjBgRiUvqw_n3Dsz60Msl4gnHQzqm6utXjHeqLZVUh1F0b4_a8tTfmegpPdIFubZLBAyadX1w6DGThalOCttDEQR_FO04HqtR-90qUev9axQqad43j2mG7Jm9tEsFunJ2Mhedqrvi-7TWQflW44IUZNFWCw4jGCTdgH_M-UfuduoKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856778953</pqid></control><display><type>article</type><title>Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Khalil, Abir ; Puel, François ; Chevalier, Yves ; Galvan, Jean-Marc ; Rivoire, Alain ; Klein, Jean-Paul</creator><creatorcontrib>Khalil, Abir ; Puel, François ; Chevalier, Yves ; Galvan, Jean-Marc ; Rivoire, Alain ; Klein, Jean-Paul</creatorcontrib><description>Understanding the evolution of liquid–liquid dispersion is a key factor in operation and control of emulsification process. A dynamic tracking of an evolving droplet size distribution (DSD) in a dilute oil-in water (O/W) emulsion has been developed with the implementation of an in situ video probe dipped in a stirred vessel and coupled with an image analysis treatment. The optical probe allows real time recording of 2D images of the droplets. Recent image analysis software developed originally for an application in micromechanics was adapted and applied in delayed time on the video sequences regularly recorded. It automatically provided a measurement of the diameter of several thousands of droplets in the range of 10–100 μm. The relative accuracy on the droplet number average diameter was 10%. This measurement technique was then used to investigate at lab scale in a stirred vessel and in warm conditions the influence of several process parameters on the evolution with time of a dispersed melted cosmetic ingredient in a water solution containing a surfactant. The specific power input of stirring was the main parameter acting on the reduction of the mean droplet diameter and of the width of the DSD owing to its action on the droplet break-up mechanism. The surfactant concentration was a parameter of secondary relevance on the DSD probably due to the reduction of the coalescence rate and to a faster stabilization of the O/W interface. The use of a flat blade propeller instead of a Rushton turbine was preferable for the production of a narrower DSD. Finally the time required to reach equilibrium was found higher by a factor of 3–4 than predicted in the literature.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2010.10.031</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Chemical and Process Engineering ; Chemical engineering ; Chemical Sciences ; Chemistry ; Colloidal state and disperse state ; Computer programs ; Drop size measurement ; Emulsification process ; Engineering Sciences ; Exact sciences and technology ; Galenic pharmacology ; General and physical chemistry ; Image analysis ; in situ monitoring ; Life Sciences ; Material chemistry ; Mixing ; Multiphase mixing ; or physical chemistry ; Pharmaceutical sciences ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polymers ; Stirred vessel ; Theoretical and</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2010-12, Vol.165 (3), p.946-957</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-c70816cdbfd5801facfb070be5022cff4f3336a9d5ab490ea81efe147d7aea983</citedby><cites>FETCH-LOGICAL-c393t-c70816cdbfd5801facfb070be5022cff4f3336a9d5ab490ea81efe147d7aea983</cites><orcidid>0000-0002-7526-5658 ; 0000-0001-6059-7273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2010.10.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23635866$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02844838$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalil, Abir</creatorcontrib><creatorcontrib>Puel, François</creatorcontrib><creatorcontrib>Chevalier, Yves</creatorcontrib><creatorcontrib>Galvan, Jean-Marc</creatorcontrib><creatorcontrib>Rivoire, Alain</creatorcontrib><creatorcontrib>Klein, Jean-Paul</creatorcontrib><title>Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>Understanding the evolution of liquid–liquid dispersion is a key factor in operation and control of emulsification process. A dynamic tracking of an evolving droplet size distribution (DSD) in a dilute oil-in water (O/W) emulsion has been developed with the implementation of an in situ video probe dipped in a stirred vessel and coupled with an image analysis treatment. The optical probe allows real time recording of 2D images of the droplets. Recent image analysis software developed originally for an application in micromechanics was adapted and applied in delayed time on the video sequences regularly recorded. It automatically provided a measurement of the diameter of several thousands of droplets in the range of 10–100 μm. The relative accuracy on the droplet number average diameter was 10%. This measurement technique was then used to investigate at lab scale in a stirred vessel and in warm conditions the influence of several process parameters on the evolution with time of a dispersed melted cosmetic ingredient in a water solution containing a surfactant. The specific power input of stirring was the main parameter acting on the reduction of the mean droplet diameter and of the width of the DSD owing to its action on the droplet break-up mechanism. The surfactant concentration was a parameter of secondary relevance on the DSD probably due to the reduction of the coalescence rate and to a faster stabilization of the O/W interface. The use of a flat blade propeller instead of a Rushton turbine was preferable for the production of a narrower DSD. Finally the time required to reach equilibrium was found higher by a factor of 3–4 than predicted in the literature.</description><subject>Applied sciences</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computer programs</subject><subject>Drop size measurement</subject><subject>Emulsification process</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Galenic pharmacology</subject><subject>General and physical chemistry</subject><subject>Image analysis</subject><subject>in situ monitoring</subject><subject>Life Sciences</subject><subject>Material chemistry</subject><subject>Mixing</subject><subject>Multiphase mixing</subject><subject>or physical chemistry</subject><subject>Pharmaceutical sciences</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polymers</subject><subject>Stirred vessel</subject><subject>Theoretical and</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UcuOFCEUrRhNHEc_wB0bY1xUC0U9qLiaTNQx6cSFuiYUXGZup7poudCT9gP8bqnpySxdAed1gVNVbwXfCC76j7uNhd2m4Q_nDZfiWXUh1CBr2YjmedlL1dVqbIeX1SuiHee8H8V4Uf39kbI7seCZi-EwQ2KEf4A5pBRxygnDwlyOuNwyszDY55nQozUPxCEGC0Qs08rjUrwpsyM6CCs3AbMhl1DH7jHdrQEmp7AvZstwb26hQGY-EdLr6oU3M8Gbx_Wy-vXl88_rm3r7_eu366ttbeUoU20HrkRv3eRdp7jwxvqJD3yCjjeN9b71UsrejK4zUztyMEqAB9EObjBgRiUvqw_n3Dsz60Msl4gnHQzqm6utXjHeqLZVUh1F0b4_a8tTfmegpPdIFubZLBAyadX1w6DGThalOCttDEQR_FO04HqtR-90qUev9axQqad43j2mG7Jm9tEsFunJ2Mhedqrvi-7TWQflW44IUZNFWCw4jGCTdgH_M-UfuduoKQ</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Khalil, Abir</creator><creator>Puel, François</creator><creator>Chevalier, Yves</creator><creator>Galvan, Jean-Marc</creator><creator>Rivoire, Alain</creator><creator>Klein, Jean-Paul</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7526-5658</orcidid><orcidid>https://orcid.org/0000-0001-6059-7273</orcidid></search><sort><creationdate>20101215</creationdate><title>Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis</title><author>Khalil, Abir ; Puel, François ; Chevalier, Yves ; Galvan, Jean-Marc ; Rivoire, Alain ; Klein, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-c70816cdbfd5801facfb070be5022cff4f3336a9d5ab490ea81efe147d7aea983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computer programs</topic><topic>Drop size measurement</topic><topic>Emulsification process</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Galenic pharmacology</topic><topic>General and physical chemistry</topic><topic>Image analysis</topic><topic>in situ monitoring</topic><topic>Life Sciences</topic><topic>Material chemistry</topic><topic>Mixing</topic><topic>Multiphase mixing</topic><topic>or physical chemistry</topic><topic>Pharmaceutical sciences</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polymers</topic><topic>Stirred vessel</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalil, Abir</creatorcontrib><creatorcontrib>Puel, François</creatorcontrib><creatorcontrib>Chevalier, Yves</creatorcontrib><creatorcontrib>Galvan, Jean-Marc</creatorcontrib><creatorcontrib>Rivoire, Alain</creatorcontrib><creatorcontrib>Klein, Jean-Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalil, Abir</au><au>Puel, François</au><au>Chevalier, Yves</au><au>Galvan, Jean-Marc</au><au>Rivoire, Alain</au><au>Klein, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2010-12-15</date><risdate>2010</risdate><volume>165</volume><issue>3</issue><spage>946</spage><epage>957</epage><pages>946-957</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>Understanding the evolution of liquid–liquid dispersion is a key factor in operation and control of emulsification process. A dynamic tracking of an evolving droplet size distribution (DSD) in a dilute oil-in water (O/W) emulsion has been developed with the implementation of an in situ video probe dipped in a stirred vessel and coupled with an image analysis treatment. The optical probe allows real time recording of 2D images of the droplets. Recent image analysis software developed originally for an application in micromechanics was adapted and applied in delayed time on the video sequences regularly recorded. It automatically provided a measurement of the diameter of several thousands of droplets in the range of 10–100 μm. The relative accuracy on the droplet number average diameter was 10%. This measurement technique was then used to investigate at lab scale in a stirred vessel and in warm conditions the influence of several process parameters on the evolution with time of a dispersed melted cosmetic ingredient in a water solution containing a surfactant. The specific power input of stirring was the main parameter acting on the reduction of the mean droplet diameter and of the width of the DSD owing to its action on the droplet break-up mechanism. The surfactant concentration was a parameter of secondary relevance on the DSD probably due to the reduction of the coalescence rate and to a faster stabilization of the O/W interface. The use of a flat blade propeller instead of a Rushton turbine was preferable for the production of a narrower DSD. Finally the time required to reach equilibrium was found higher by a factor of 3–4 than predicted in the literature.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2010.10.031</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7526-5658</orcidid><orcidid>https://orcid.org/0000-0001-6059-7273</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2010-12, Vol.165 (3), p.946-957
issn 1385-8947
1873-3212
language eng
recordid cdi_hal_primary_oai_HAL_hal_02844838v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemical and Process Engineering
Chemical engineering
Chemical Sciences
Chemistry
Colloidal state and disperse state
Computer programs
Drop size measurement
Emulsification process
Engineering Sciences
Exact sciences and technology
Galenic pharmacology
General and physical chemistry
Image analysis
in situ monitoring
Life Sciences
Material chemistry
Mixing
Multiphase mixing
or physical chemistry
Pharmaceutical sciences
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Polymers
Stirred vessel
Theoretical and
title Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20droplet%20size%20distribution%20during%20an%20emulsification%20process%20using%20in%20situ%20video%20probe%20coupled%20with%20an%20automatic%20image%20analysis&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Khalil,%20Abir&rft.date=2010-12-15&rft.volume=165&rft.issue=3&rft.spage=946&rft.epage=957&rft.pages=946-957&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2010.10.031&rft_dat=%3Cproquest_hal_p%3E856778953%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856778953&rft_id=info:pmid/&rft_els_id=S1385894710009514&rfr_iscdi=true