FFT based numerical homogenization method for porous conductive materials

The Fourier series method is used to solve the periodic homogenization problem for conductive materials containing voids. The problems involving voids are special cases of infinite contrast whose full field solution is not unique, causing convergence issues when iteration schemes are used. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-08, Vol.368, p.113160, Article 113160
Hauptverfasser: To, Quy-Dong, Bonnet, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113160
container_title Computer methods in applied mechanics and engineering
container_volume 368
creator To, Quy-Dong
Bonnet, Guy
description The Fourier series method is used to solve the periodic homogenization problem for conductive materials containing voids. The problems involving voids are special cases of infinite contrast whose full field solution is not unique, causing convergence issues when iteration schemes are used. In this paper, we reformulate the problem based on the temperature field in the skeleton and derive an equation where the temperature field is connected to values on the pore boundary. Iteration schemes based on the new equation show that the convergence is fast, yielding good results both in terms of local fields and effective conductive properties. •Fast Fourier Transform techniques to compute effective conductivity of porous material.•Fast convergence iterative scheme for the infinite contrast problem involving voids.•Analytical form factors for polygons which can be applied to void of arbitrary shape.
doi_str_mv 10.1016/j.cma.2020.113160
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02794345v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520303455</els_id><sourcerecordid>2442330347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7a2e0ae4ae99e6e20b70df2a6535216b59acceadb5d0d70585a32b1b2ccd33743</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuCJw9b83ezi6dSrC0UvNRzyCazNqW7qcluQT-9KSsenctjhvcbZh5C9wTPCCbF035mWj2jmKaeMFLgCzQhpaxySlh5iSYYc5HLkoprdBPjHqcqCZ2g9XK5zWodwWbd0EJwRh-ynW_9B3TuW_fOd1kL_c7brPEhO_rgh5gZ39nB9O4EWav7ROlDvEVXTRK4-9Upel--bBerfPP2ul7MN7nhmPa51BSwBq6hqqAAimuJbUN1IZigpKhFpY0BbWthsZVYlEIzWpOaGmMZk5xN0eO4d6cP6hhcq8OX8tqp1XyjzjNMZcUZFyeSvA-j9xj85wCxV3s_hC6dpyjnlDHMuEwuMrpM8DEGaP7WEqzO6aq9Sumqc7pqTDcxzyMD6dWTg6CicdAZsC6A6ZX17h_6B1HqgWY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442330347</pqid></control><display><type>article</type><title>FFT based numerical homogenization method for porous conductive materials</title><source>Elsevier ScienceDirect Journals</source><creator>To, Quy-Dong ; Bonnet, Guy</creator><creatorcontrib>To, Quy-Dong ; Bonnet, Guy</creatorcontrib><description>The Fourier series method is used to solve the periodic homogenization problem for conductive materials containing voids. The problems involving voids are special cases of infinite contrast whose full field solution is not unique, causing convergence issues when iteration schemes are used. In this paper, we reformulate the problem based on the temperature field in the skeleton and derive an equation where the temperature field is connected to values on the pore boundary. Iteration schemes based on the new equation show that the convergence is fast, yielding good results both in terms of local fields and effective conductive properties. •Fast Fourier Transform techniques to compute effective conductivity of porous material.•Fast convergence iterative scheme for the infinite contrast problem involving voids.•Analytical form factors for polygons which can be applied to void of arbitrary shape.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.113160</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Conductivity ; Convergence ; Engineering Sciences ; Fast Fourier transform ; Fourier series ; Homogenization ; Iteration scheme ; Iterative methods ; Mechanics ; Numerical homogenization method ; Porous conductive media ; Porous materials ; Solid mechanics ; Temperature distribution</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-08, Vol.368, p.113160, Article 113160</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7a2e0ae4ae99e6e20b70df2a6535216b59acceadb5d0d70585a32b1b2ccd33743</citedby><cites>FETCH-LOGICAL-c402t-7a2e0ae4ae99e6e20b70df2a6535216b59acceadb5d0d70585a32b1b2ccd33743</cites><orcidid>0000-0001-9257-835X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2020.113160$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02794345$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>To, Quy-Dong</creatorcontrib><creatorcontrib>Bonnet, Guy</creatorcontrib><title>FFT based numerical homogenization method for porous conductive materials</title><title>Computer methods in applied mechanics and engineering</title><description>The Fourier series method is used to solve the periodic homogenization problem for conductive materials containing voids. The problems involving voids are special cases of infinite contrast whose full field solution is not unique, causing convergence issues when iteration schemes are used. In this paper, we reformulate the problem based on the temperature field in the skeleton and derive an equation where the temperature field is connected to values on the pore boundary. Iteration schemes based on the new equation show that the convergence is fast, yielding good results both in terms of local fields and effective conductive properties. •Fast Fourier Transform techniques to compute effective conductivity of porous material.•Fast convergence iterative scheme for the infinite contrast problem involving voids.•Analytical form factors for polygons which can be applied to void of arbitrary shape.</description><subject>Conductivity</subject><subject>Convergence</subject><subject>Engineering Sciences</subject><subject>Fast Fourier transform</subject><subject>Fourier series</subject><subject>Homogenization</subject><subject>Iteration scheme</subject><subject>Iterative methods</subject><subject>Mechanics</subject><subject>Numerical homogenization method</subject><subject>Porous conductive media</subject><subject>Porous materials</subject><subject>Solid mechanics</subject><subject>Temperature distribution</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuCJw9b83ezi6dSrC0UvNRzyCazNqW7qcluQT-9KSsenctjhvcbZh5C9wTPCCbF035mWj2jmKaeMFLgCzQhpaxySlh5iSYYc5HLkoprdBPjHqcqCZ2g9XK5zWodwWbd0EJwRh-ynW_9B3TuW_fOd1kL_c7brPEhO_rgh5gZ39nB9O4EWav7ROlDvEVXTRK4-9Upel--bBerfPP2ul7MN7nhmPa51BSwBq6hqqAAimuJbUN1IZigpKhFpY0BbWthsZVYlEIzWpOaGmMZk5xN0eO4d6cP6hhcq8OX8tqp1XyjzjNMZcUZFyeSvA-j9xj85wCxV3s_hC6dpyjnlDHMuEwuMrpM8DEGaP7WEqzO6aq9Sumqc7pqTDcxzyMD6dWTg6CicdAZsC6A6ZX17h_6B1HqgWY</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>To, Quy-Dong</creator><creator>Bonnet, Guy</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9257-835X</orcidid></search><sort><creationdate>20200815</creationdate><title>FFT based numerical homogenization method for porous conductive materials</title><author>To, Quy-Dong ; Bonnet, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7a2e0ae4ae99e6e20b70df2a6535216b59acceadb5d0d70585a32b1b2ccd33743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conductivity</topic><topic>Convergence</topic><topic>Engineering Sciences</topic><topic>Fast Fourier transform</topic><topic>Fourier series</topic><topic>Homogenization</topic><topic>Iteration scheme</topic><topic>Iterative methods</topic><topic>Mechanics</topic><topic>Numerical homogenization method</topic><topic>Porous conductive media</topic><topic>Porous materials</topic><topic>Solid mechanics</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>To, Quy-Dong</creatorcontrib><creatorcontrib>Bonnet, Guy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>To, Quy-Dong</au><au>Bonnet, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FFT based numerical homogenization method for porous conductive materials</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>368</volume><spage>113160</spage><pages>113160-</pages><artnum>113160</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>The Fourier series method is used to solve the periodic homogenization problem for conductive materials containing voids. The problems involving voids are special cases of infinite contrast whose full field solution is not unique, causing convergence issues when iteration schemes are used. In this paper, we reformulate the problem based on the temperature field in the skeleton and derive an equation where the temperature field is connected to values on the pore boundary. Iteration schemes based on the new equation show that the convergence is fast, yielding good results both in terms of local fields and effective conductive properties. •Fast Fourier Transform techniques to compute effective conductivity of porous material.•Fast convergence iterative scheme for the infinite contrast problem involving voids.•Analytical form factors for polygons which can be applied to void of arbitrary shape.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.113160</doi><orcidid>https://orcid.org/0000-0001-9257-835X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-08, Vol.368, p.113160, Article 113160
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_02794345v1
source Elsevier ScienceDirect Journals
subjects Conductivity
Convergence
Engineering Sciences
Fast Fourier transform
Fourier series
Homogenization
Iteration scheme
Iterative methods
Mechanics
Numerical homogenization method
Porous conductive media
Porous materials
Solid mechanics
Temperature distribution
title FFT based numerical homogenization method for porous conductive materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FFT%20based%20numerical%20homogenization%20method%20for%20porous%20conductive%20materials&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=To,%20Quy-Dong&rft.date=2020-08-15&rft.volume=368&rft.spage=113160&rft.pages=113160-&rft.artnum=113160&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.113160&rft_dat=%3Cproquest_hal_p%3E2442330347%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442330347&rft_id=info:pmid/&rft_els_id=S0045782520303455&rfr_iscdi=true