Imaging Spectroscopy for Soil Mapping and Monitoring
There is a renewed awareness of the finite nature of the world’s soil resources, growing concern about soil security and significant uncertainties about the carrying capacity of the planet. Regular assessments of soil conditions from local through to global scales are requested, and there is a clear...
Gespeichert in:
Veröffentlicht in: | Surveys in geophysics 2019-05, Vol.40 (3), p.361-399 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 399 |
---|---|
container_issue | 3 |
container_start_page | 361 |
container_title | Surveys in geophysics |
container_volume | 40 |
creator | Chabrillat, S. Ben-Dor, E. Cierniewski, J. Gomez, C. Schmid, T. van Wesemael, B. |
description | There is a renewed awareness of the finite nature of the world’s soil resources, growing concern about soil security and significant uncertainties about the carrying capacity of the planet. Regular assessments of soil conditions from local through to global scales are requested, and there is a clear demand for accurate, up-to-date and spatially referenced soil information by the modelling scientific community, farmers and land users, and policy- and decision-makers. Soil and imaging spectroscopy, based on visible–near-infrared and shortwave infrared (400–2500 nm) spectral reflectance, has been shown to be a proven method for the quantitative prediction of key soil surface properties. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next years, a high potential to meet the demand for global soil mapping and monitoring is appearing. In this paper, we briefly review the basic concepts of soil spectroscopy with a special attention to the effects of soil roughness on reflectance and then provide a review of state of the art, achievements and perspectives in soil mapping and monitoring based on imaging spectroscopy from air- and spaceborne sensors. Selected application cases are presented for the modelling of soil organic carbon, mineralogical composition, topsoil water content and characterization of soil crust, soil erosion and soil degradation stages based on airborne and simulated spaceborne imaging spectroscopy data. Further, current challenges, gaps and new directions toward enhanced soil properties modelling are presented. Overall, this paper highlights the potential and limitations of multiscale imaging spectroscopy nowadays for soil mapping and monitoring, and capabilities and requirements of upcoming spaceborne sensors as support for a more informed and sustainable use of our world’s soil resources. |
doi_str_mv | 10.1007/s10712-019-09524-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02735880v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194433199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ceab5ef611be56db13aad422b60e094b04002c9ba4df28d64007e6c262ece6283</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMcPcIrEiYNh_YgTH6sKaKVWHApny3GckqqNjZ0i9e9xCIIbp9Xszox2BqEbAvcEoHiIBApCMRCJQeaUYzhBE5IXbIDiFE2ACIkZleU5uohxCwClkGyC-GKvN223ydbemj64aJw_Zo0L2dq1u2ylvR-uuquzleva3oUEr9BZo3fRXv_MS_T29Pg6m-Ply_NiNl1iw2TRY2N1ldtGEFLZXNQVYVrXnNJKgAXJK-AA1MhK87qhZS0SLKwwVFBrrKAlu0R3o--73ikf2r0OR-V0q-bTpRp2QAuWlyV8ksS9Hbk-uI-Djb3aukPo0nuKEsk5Y0TKxKIjy6SoMdjm15aAGppUY5MqNam-m1SQRGwURT-kt-HP-h_VF1_9dHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194433199</pqid></control><display><type>article</type><title>Imaging Spectroscopy for Soil Mapping and Monitoring</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chabrillat, S. ; Ben-Dor, E. ; Cierniewski, J. ; Gomez, C. ; Schmid, T. ; van Wesemael, B.</creator><creatorcontrib>Chabrillat, S. ; Ben-Dor, E. ; Cierniewski, J. ; Gomez, C. ; Schmid, T. ; van Wesemael, B.</creatorcontrib><description>There is a renewed awareness of the finite nature of the world’s soil resources, growing concern about soil security and significant uncertainties about the carrying capacity of the planet. Regular assessments of soil conditions from local through to global scales are requested, and there is a clear demand for accurate, up-to-date and spatially referenced soil information by the modelling scientific community, farmers and land users, and policy- and decision-makers. Soil and imaging spectroscopy, based on visible–near-infrared and shortwave infrared (400–2500 nm) spectral reflectance, has been shown to be a proven method for the quantitative prediction of key soil surface properties. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next years, a high potential to meet the demand for global soil mapping and monitoring is appearing. In this paper, we briefly review the basic concepts of soil spectroscopy with a special attention to the effects of soil roughness on reflectance and then provide a review of state of the art, achievements and perspectives in soil mapping and monitoring based on imaging spectroscopy from air- and spaceborne sensors. Selected application cases are presented for the modelling of soil organic carbon, mineralogical composition, topsoil water content and characterization of soil crust, soil erosion and soil degradation stages based on airborne and simulated spaceborne imaging spectroscopy data. Further, current challenges, gaps and new directions toward enhanced soil properties modelling are presented. Overall, this paper highlights the potential and limitations of multiscale imaging spectroscopy nowadays for soil mapping and monitoring, and capabilities and requirements of upcoming spaceborne sensors as support for a more informed and sustainable use of our world’s soil resources.</description><identifier>ISSN: 0169-3298</identifier><identifier>EISSN: 1573-0956</identifier><identifier>DOI: 10.1007/s10712-019-09524-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analytical methods ; Astronomy ; Carrying capacity ; Composition ; Computer simulation ; Data processing ; Earth and Environmental Science ; Earth Sciences ; Environmental monitoring ; Geophysics/Geodesy ; Imaging ; Imaging techniques ; Mapping ; Modelling ; Moisture content ; Monitoring ; Observations and Techniques ; Organic carbon ; Organic soils ; Reflectance ; Resources ; Roughness ; Satellites ; Sciences of the Universe ; Security ; Sensors ; Short wave radiation ; Soil ; Soil conditions ; Soil degradation ; Soil erosion ; Soil mapping ; Soil properties ; Soil surfaces ; Spectral reflectance ; Spectroscopy ; Spectrum analysis ; State-of-the-art reviews ; Surface properties ; Sustainable use ; Topsoil ; Water content</subject><ispartof>Surveys in geophysics, 2019-05, Vol.40 (3), p.361-399</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Surveys in Geophysics is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ceab5ef611be56db13aad422b60e094b04002c9ba4df28d64007e6c262ece6283</citedby><cites>FETCH-LOGICAL-c397t-ceab5ef611be56db13aad422b60e094b04002c9ba4df28d64007e6c262ece6283</cites><orcidid>0000-0001-8600-5168 ; 0000-0002-8900-4600 ; 0000-0002-2986-430X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10712-019-09524-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10712-019-09524-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02735880$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chabrillat, S.</creatorcontrib><creatorcontrib>Ben-Dor, E.</creatorcontrib><creatorcontrib>Cierniewski, J.</creatorcontrib><creatorcontrib>Gomez, C.</creatorcontrib><creatorcontrib>Schmid, T.</creatorcontrib><creatorcontrib>van Wesemael, B.</creatorcontrib><title>Imaging Spectroscopy for Soil Mapping and Monitoring</title><title>Surveys in geophysics</title><addtitle>Surv Geophys</addtitle><description>There is a renewed awareness of the finite nature of the world’s soil resources, growing concern about soil security and significant uncertainties about the carrying capacity of the planet. Regular assessments of soil conditions from local through to global scales are requested, and there is a clear demand for accurate, up-to-date and spatially referenced soil information by the modelling scientific community, farmers and land users, and policy- and decision-makers. Soil and imaging spectroscopy, based on visible–near-infrared and shortwave infrared (400–2500 nm) spectral reflectance, has been shown to be a proven method for the quantitative prediction of key soil surface properties. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next years, a high potential to meet the demand for global soil mapping and monitoring is appearing. In this paper, we briefly review the basic concepts of soil spectroscopy with a special attention to the effects of soil roughness on reflectance and then provide a review of state of the art, achievements and perspectives in soil mapping and monitoring based on imaging spectroscopy from air- and spaceborne sensors. Selected application cases are presented for the modelling of soil organic carbon, mineralogical composition, topsoil water content and characterization of soil crust, soil erosion and soil degradation stages based on airborne and simulated spaceborne imaging spectroscopy data. Further, current challenges, gaps and new directions toward enhanced soil properties modelling are presented. Overall, this paper highlights the potential and limitations of multiscale imaging spectroscopy nowadays for soil mapping and monitoring, and capabilities and requirements of upcoming spaceborne sensors as support for a more informed and sustainable use of our world’s soil resources.</description><subject>Analytical methods</subject><subject>Astronomy</subject><subject>Carrying capacity</subject><subject>Composition</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental monitoring</subject><subject>Geophysics/Geodesy</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Mapping</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Monitoring</subject><subject>Observations and Techniques</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Reflectance</subject><subject>Resources</subject><subject>Roughness</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Security</subject><subject>Sensors</subject><subject>Short wave radiation</subject><subject>Soil</subject><subject>Soil conditions</subject><subject>Soil degradation</subject><subject>Soil erosion</subject><subject>Soil mapping</subject><subject>Soil properties</subject><subject>Soil surfaces</subject><subject>Spectral reflectance</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>State-of-the-art reviews</subject><subject>Surface properties</subject><subject>Sustainable use</subject><subject>Topsoil</subject><subject>Water content</subject><issn>0169-3298</issn><issn>1573-0956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIlMcPcIrEiYNh_YgTH6sKaKVWHApny3GckqqNjZ0i9e9xCIIbp9Xszox2BqEbAvcEoHiIBApCMRCJQeaUYzhBE5IXbIDiFE2ACIkZleU5uohxCwClkGyC-GKvN223ydbemj64aJw_Zo0L2dq1u2ylvR-uuquzleva3oUEr9BZo3fRXv_MS_T29Pg6m-Ply_NiNl1iw2TRY2N1ldtGEFLZXNQVYVrXnNJKgAXJK-AA1MhK87qhZS0SLKwwVFBrrKAlu0R3o--73ikf2r0OR-V0q-bTpRp2QAuWlyV8ksS9Hbk-uI-Djb3aukPo0nuKEsk5Y0TKxKIjy6SoMdjm15aAGppUY5MqNam-m1SQRGwURT-kt-HP-h_VF1_9dHc</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Chabrillat, S.</creator><creator>Ben-Dor, E.</creator><creator>Cierniewski, J.</creator><creator>Gomez, C.</creator><creator>Schmid, T.</creator><creator>van Wesemael, B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Editions Springer</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8600-5168</orcidid><orcidid>https://orcid.org/0000-0002-8900-4600</orcidid><orcidid>https://orcid.org/0000-0002-2986-430X</orcidid></search><sort><creationdate>20190501</creationdate><title>Imaging Spectroscopy for Soil Mapping and Monitoring</title><author>Chabrillat, S. ; Ben-Dor, E. ; Cierniewski, J. ; Gomez, C. ; Schmid, T. ; van Wesemael, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ceab5ef611be56db13aad422b60e094b04002c9ba4df28d64007e6c262ece6283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical methods</topic><topic>Astronomy</topic><topic>Carrying capacity</topic><topic>Composition</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental monitoring</topic><topic>Geophysics/Geodesy</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Mapping</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Monitoring</topic><topic>Observations and Techniques</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Reflectance</topic><topic>Resources</topic><topic>Roughness</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Security</topic><topic>Sensors</topic><topic>Short wave radiation</topic><topic>Soil</topic><topic>Soil conditions</topic><topic>Soil degradation</topic><topic>Soil erosion</topic><topic>Soil mapping</topic><topic>Soil properties</topic><topic>Soil surfaces</topic><topic>Spectral reflectance</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>State-of-the-art reviews</topic><topic>Surface properties</topic><topic>Sustainable use</topic><topic>Topsoil</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chabrillat, S.</creatorcontrib><creatorcontrib>Ben-Dor, E.</creatorcontrib><creatorcontrib>Cierniewski, J.</creatorcontrib><creatorcontrib>Gomez, C.</creatorcontrib><creatorcontrib>Schmid, T.</creatorcontrib><creatorcontrib>van Wesemael, B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Surveys in geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chabrillat, S.</au><au>Ben-Dor, E.</au><au>Cierniewski, J.</au><au>Gomez, C.</au><au>Schmid, T.</au><au>van Wesemael, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Spectroscopy for Soil Mapping and Monitoring</atitle><jtitle>Surveys in geophysics</jtitle><stitle>Surv Geophys</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>40</volume><issue>3</issue><spage>361</spage><epage>399</epage><pages>361-399</pages><issn>0169-3298</issn><eissn>1573-0956</eissn><abstract>There is a renewed awareness of the finite nature of the world’s soil resources, growing concern about soil security and significant uncertainties about the carrying capacity of the planet. Regular assessments of soil conditions from local through to global scales are requested, and there is a clear demand for accurate, up-to-date and spatially referenced soil information by the modelling scientific community, farmers and land users, and policy- and decision-makers. Soil and imaging spectroscopy, based on visible–near-infrared and shortwave infrared (400–2500 nm) spectral reflectance, has been shown to be a proven method for the quantitative prediction of key soil surface properties. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next years, a high potential to meet the demand for global soil mapping and monitoring is appearing. In this paper, we briefly review the basic concepts of soil spectroscopy with a special attention to the effects of soil roughness on reflectance and then provide a review of state of the art, achievements and perspectives in soil mapping and monitoring based on imaging spectroscopy from air- and spaceborne sensors. Selected application cases are presented for the modelling of soil organic carbon, mineralogical composition, topsoil water content and characterization of soil crust, soil erosion and soil degradation stages based on airborne and simulated spaceborne imaging spectroscopy data. Further, current challenges, gaps and new directions toward enhanced soil properties modelling are presented. Overall, this paper highlights the potential and limitations of multiscale imaging spectroscopy nowadays for soil mapping and monitoring, and capabilities and requirements of upcoming spaceborne sensors as support for a more informed and sustainable use of our world’s soil resources.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10712-019-09524-0</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-8600-5168</orcidid><orcidid>https://orcid.org/0000-0002-8900-4600</orcidid><orcidid>https://orcid.org/0000-0002-2986-430X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3298 |
ispartof | Surveys in geophysics, 2019-05, Vol.40 (3), p.361-399 |
issn | 0169-3298 1573-0956 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02735880v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical methods Astronomy Carrying capacity Composition Computer simulation Data processing Earth and Environmental Science Earth Sciences Environmental monitoring Geophysics/Geodesy Imaging Imaging techniques Mapping Modelling Moisture content Monitoring Observations and Techniques Organic carbon Organic soils Reflectance Resources Roughness Satellites Sciences of the Universe Security Sensors Short wave radiation Soil Soil conditions Soil degradation Soil erosion Soil mapping Soil properties Soil surfaces Spectral reflectance Spectroscopy Spectrum analysis State-of-the-art reviews Surface properties Sustainable use Topsoil Water content |
title | Imaging Spectroscopy for Soil Mapping and Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Spectroscopy%20for%20Soil%20Mapping%20and%20Monitoring&rft.jtitle=Surveys%20in%20geophysics&rft.au=Chabrillat,%20S.&rft.date=2019-05-01&rft.volume=40&rft.issue=3&rft.spage=361&rft.epage=399&rft.pages=361-399&rft.issn=0169-3298&rft.eissn=1573-0956&rft_id=info:doi/10.1007/s10712-019-09524-0&rft_dat=%3Cproquest_hal_p%3E2194433199%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194433199&rft_id=info:pmid/&rfr_iscdi=true |