New cases of negative cross-resistance between fungicides, including sterol biosynthesis inhibitors
A survey of fungicide resistance in Mycosphaerella graminicola and Tapesia acuformis, two major pathogens of winter wheat in France, respectively responsible for speckled leaf blotch and eyespot, led to the characterization of two types of resistant strains to sterol 14α-demethylation inhibitors (DM...
Gespeichert in:
Veröffentlicht in: | Journal of general plant pathology : JGPP 2000-02, Vol.66 (1), p.75-81 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A survey of fungicide resistance in Mycosphaerella graminicola and Tapesia acuformis, two major pathogens of winter wheat in France, respectively responsible for speckled leaf blotch and eyespot, led to the characterization of two types of resistant strains to sterol 14α-demethylation inhibitors (DMIs). Most of the strains of M. graminicola collected in France in 1997–1998 were resistant to all DMIs, and only in a few strains was the resistance to several triazoles associated with increased susceptibility to pyrimidine derivatives (i.e., fenarimol, nuarimol) and triflumizole. On the other hand, in T. acuformis the most prevalent strains were those which exhibited negative-cross resistance between DMIs. In both fungi such a phenomenon could be related to changes in cytochrome P450 sterol 14α-demethylase, the target site of these fungicides. For Botryotinia fuckeliana, the causal agent of grey mould, the extensive monitoring conducted in French vineyards before the marketing of fenhexamid revealed the presence of highly resistant strains to this promising botryticide (only in tests involving mycelial growth measurements). Negative cross-resistance to edifenphos and several sterol biosynthesis inhibitors, such as prochloraz and fenpropimorph, was observed in fenhexamid resistant strains. Synergism of the antifungal action of fenhexamid by cytochrome P450 inhibitors, such as the DMI fungicides, was only recorded in fenhexamid resistant strains. These data and those previously obtained with edifenphos resistant strains of Magnaporthe grisea (rice blast pathogen) suggest that in fenhexamid resistant strains of B. fuckeliana the same cytochrome P450 monooxygenase could be involved in detoxification of fenhexamid and activation of edifenphos. |
---|---|
ISSN: | 1345-2630 1610-739X |
DOI: | 10.1007/PL00012925 |