Random mtDNA deletions and functional consequence in aged human skeletal muscle

Mitochondrial respiratory chain deteriorates with age, mostly in tissues with high energy requirements. Damage to mitochondrial DNA (mtDNA) by reactive oxygen species is thought to contribute primarily to this impairment. However, the overall extent of random mtDNA mutations has still not been evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2005-07, Vol.332 (2), p.542-549
Hauptverfasser: Chabi, Béatrice, de Camaret, Bénédicte Mousson, Chevrollier, Arnaud, Boisgard, Stéphane, Stepien, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitochondrial respiratory chain deteriorates with age, mostly in tissues with high energy requirements. Damage to mitochondrial DNA (mtDNA) by reactive oxygen species is thought to contribute primarily to this impairment. However, the overall extent of random mtDNA mutations has still not been evaluated. We carried out molecular and biochemical analyses in muscle biopsies from healthy young and aged subjects. Deleted mtDNA accumulation was followed by both quantitative PCR analysis to quantify total mtDNA, and Southern-blotting, to determine deleted to full length mtDNA ratio. Enzymatic activities of the mitochondrial respiratory chain were measured in all subjects. Randomly deleted mtDNA appeared mainly in the oldest subjects (beyond 80 years old), affecting up to 70% of mtDNA molecules. The activities of complexes III and IV of the respiratory chain, complexes with mtDNA encoded subunits, are lower in the aged subjects. Physical activity could be one major parameter modulating the mitochondrial respiratory chain activity in aged muscle.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2005.04.153