The RickA protein of Rickettsia conorii activates the Arp2/3 complex

Actin polymerization, the main driving force for cell locomotion, is also used by the bacteria Listeria and Shigella and vaccinia virus for intracellular and intercellular movements. Seminal studies have shown the key function of the Arp2/3 complex in nucleating actin and generating a branched array...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2004-01, Vol.427 (6973), p.457-461
Hauptverfasser: Cossart, Pascale, Gouin, Edith, Egile, Coumaran, Dehoux, Pierre, Villiers, Véronique, Adams, Josephine, Gertler, Frank, Li, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Actin polymerization, the main driving force for cell locomotion, is also used by the bacteria Listeria and Shigella and vaccinia virus for intracellular and intercellular movements. Seminal studies have shown the key function of the Arp2/3 complex in nucleating actin and generating a branched array of actin filaments during membrane extension and pathogen movement. Arp2/3 requires activation by proteins such as the WASP-family proteins or ActA of Listeria. We previously reported that actin tails of Rickettsia conorii, another intracellular bacterium, unlike those of Listeria, Shigella or vaccinia, are made of long unbranched actin filaments apparently devoid of Arp2/3 (ref. 4). Here we identify a R. conorii surface protein, RickA, that activates Arp2/3 in vitro, although less efficiently than ActA. In infected cells, Arp2/3 is detected on the rickettsial surface but not in actin tails. When expressed in mammalian cells and targeted to the membrane, RickA induces filopodia. Thus RickA-induced actin polymerization, by generating long actin filaments reminiscent of those present in filopodia, has potential as a tool for studying filopodia formation.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature02318