Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus

Several genetic linkage maps have been published in recent years on different Prunus species suggesting a high level of resemblance among the genomes of these species. One of these maps (Joobeur et al., Theor Appl Genet 97:1034-1041 [(1998); Aranzana et al., Theor Appl Genet 106:819-825 (2002b)] con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2004-04, Vol.108 (6), p.1120-1130
Hauptverfasser: Lambert, P, Hagen, L.S, Arus, P, Audergon, J.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1130
container_issue 6
container_start_page 1120
container_title Theoretical and applied genetics
container_volume 108
creator Lambert, P
Hagen, L.S
Arus, P
Audergon, J.M
description Several genetic linkage maps have been published in recent years on different Prunus species suggesting a high level of resemblance among the genomes of these species. One of these maps (Joobeur et al., Theor Appl Genet 97:1034-1041 [(1998); Aranzana et al., Theor Appl Genet 106:819-825 (2002b)] constructed from interspecific almond Texas x peach Earlygold F2 progeny (TxE) was considered to be saturated. We selected 142 F1 apricot hybrids obtained from a cross between P. armeniaca cvs. Polonais and Stark Early Orange for mapping. Eighty-eight RFLP probes and 20 peach SSR primer pairs used for the 'reference map' were selected to cover the eight linkage groups. One P. davidiana and an additional 14 apricot simple sequence repeats (SSRs) were mapped for the F1 progeny. Eighty-three amplified fragment length polymorphisms were added in order to increase the density of the maps. Separate maps were made for each parent according to the 'double pseudo-testcross' model of analysis. A total of 141 markers were placed on the map of Stark Early Orange, defining a total length of 699 cM, and 110 markers were placed on the map of Polonais, defining a total length of 538 cM. Twenty-one SSRs and 18 restriction placed in the TxE map were heterozygous in both parents (anchor loci), thereby enabling the alignment of the eight homologous linkage groups of each map. Except for 15 markers, most markers present in each linkage group in apricot were aligned with those in TxE map, indicating a high degree of colinearity between the apricot genome and the peach and almond genomes. These results suggest a strong homology of the genomes between these species and probably between Prunophora and Amygdalus sub-genera.
doi_str_mv 10.1007/s00122-003-1526-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02679232v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17935193</sourcerecordid><originalsourceid>FETCH-LOGICAL-f326t-5ce5b2ca202c94a182a8f06ee08cfde445154b52db7f00da86f1cc410c5393f63</originalsourceid><addsrcrecordid>eNqF0c1u1DAQB3ALgehSeAAu4AuIHlLG4zgfx6oqLdJKINGeo1lnvBtw4sVO-vEQvDOBLIgbp5FGP_1nRiPESwWnCqB8nwAUYgagM2WwyPQjsVK5xgwxx8diBZBDZkqDR-JZSl8BAA3op-JIGShKXdcr8eOSBx47K303fKMty572SQYnx7sgaR87G0ZpJz92txSTfPc5TsOUJMWeh44syfXpibSh31PkVt51406OO5bk-zC08prvKcl7uWeyO3lB0T9sg29lZMeRB_t7nHQhyiX3uXjiyCd-cajH4ubDxfX5Vbb-dPnx_GydOY3FmBnLZoOWENDWOakKqXJQMENlXct5bpTJNwbbTekAWqoKp6zNFVija-0KfSxOltwd-WY-sqf40ATqmquzdfOrB1iUNWq8VbN9u9h9DN8nTmPTd8my9zRwmFJTqgpqVev_QlXW2izw1QFOm57bvwv8-coM3hwAJUveRRpsl_5xRVFCWc7u9eIchYa2cTY3XxCUBqg1AlT6J6FopSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17935193</pqid></control><display><type>article</type><title>Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Lambert, P ; Hagen, L.S ; Arus, P ; Audergon, J.M</creator><creatorcontrib>Lambert, P ; Hagen, L.S ; Arus, P ; Audergon, J.M</creatorcontrib><description>Several genetic linkage maps have been published in recent years on different Prunus species suggesting a high level of resemblance among the genomes of these species. One of these maps (Joobeur et al., Theor Appl Genet 97:1034-1041 [(1998); Aranzana et al., Theor Appl Genet 106:819-825 (2002b)] constructed from interspecific almond Texas x peach Earlygold F2 progeny (TxE) was considered to be saturated. We selected 142 F1 apricot hybrids obtained from a cross between P. armeniaca cvs. Polonais and Stark Early Orange for mapping. Eighty-eight RFLP probes and 20 peach SSR primer pairs used for the 'reference map' were selected to cover the eight linkage groups. One P. davidiana and an additional 14 apricot simple sequence repeats (SSRs) were mapped for the F1 progeny. Eighty-three amplified fragment length polymorphisms were added in order to increase the density of the maps. Separate maps were made for each parent according to the 'double pseudo-testcross' model of analysis. A total of 141 markers were placed on the map of Stark Early Orange, defining a total length of 699 cM, and 110 markers were placed on the map of Polonais, defining a total length of 538 cM. Twenty-one SSRs and 18 restriction placed in the TxE map were heterozygous in both parents (anchor loci), thereby enabling the alignment of the eight homologous linkage groups of each map. Except for 15 markers, most markers present in each linkage group in apricot were aligned with those in TxE map, indicating a high degree of colinearity between the apricot genome and the peach and almond genomes. These results suggest a strong homology of the genomes between these species and probably between Prunophora and Amygdalus sub-genera.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-003-1526-3</identifier><identifier>PMID: 15067399</identifier><identifier>CODEN: THAGA6</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>almonds ; amplified fragment length polymorphism ; apricots ; Biological and medical sciences ; Chromosome Mapping ; Classical genetics, quantitative genetics, hybrids ; Crosses, Genetic ; cultivars ; Fundamental and applied biological sciences. Psychology ; genetic markers ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; inheritance (genetics) ; interspecific hybridization ; Life Sciences ; linkage groups ; Methods, theories and miscellaneous ; microsatellite repeats ; Minisatellite Repeats - genetics ; peaches ; Polymorphism, Restriction Fragment Length ; Prunus - genetics ; Prunus amygdalus ; Prunus armeniaca ; Prunus davidiana ; Prunus dulcis ; Prunus persica ; Pteridophyta, spermatophyta ; restriction fragment length polymorphism ; Vegetals</subject><ispartof>Theoretical and applied genetics, 2004-04, Vol.108 (6), p.1120-1130</ispartof><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3132-5815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15667077$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15067399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02679232$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambert, P</creatorcontrib><creatorcontrib>Hagen, L.S</creatorcontrib><creatorcontrib>Arus, P</creatorcontrib><creatorcontrib>Audergon, J.M</creatorcontrib><title>Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>Several genetic linkage maps have been published in recent years on different Prunus species suggesting a high level of resemblance among the genomes of these species. One of these maps (Joobeur et al., Theor Appl Genet 97:1034-1041 [(1998); Aranzana et al., Theor Appl Genet 106:819-825 (2002b)] constructed from interspecific almond Texas x peach Earlygold F2 progeny (TxE) was considered to be saturated. We selected 142 F1 apricot hybrids obtained from a cross between P. armeniaca cvs. Polonais and Stark Early Orange for mapping. Eighty-eight RFLP probes and 20 peach SSR primer pairs used for the 'reference map' were selected to cover the eight linkage groups. One P. davidiana and an additional 14 apricot simple sequence repeats (SSRs) were mapped for the F1 progeny. Eighty-three amplified fragment length polymorphisms were added in order to increase the density of the maps. Separate maps were made for each parent according to the 'double pseudo-testcross' model of analysis. A total of 141 markers were placed on the map of Stark Early Orange, defining a total length of 699 cM, and 110 markers were placed on the map of Polonais, defining a total length of 538 cM. Twenty-one SSRs and 18 restriction placed in the TxE map were heterozygous in both parents (anchor loci), thereby enabling the alignment of the eight homologous linkage groups of each map. Except for 15 markers, most markers present in each linkage group in apricot were aligned with those in TxE map, indicating a high degree of colinearity between the apricot genome and the peach and almond genomes. These results suggest a strong homology of the genomes between these species and probably between Prunophora and Amygdalus sub-genera.</description><subject>almonds</subject><subject>amplified fragment length polymorphism</subject><subject>apricots</subject><subject>Biological and medical sciences</subject><subject>Chromosome Mapping</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Crosses, Genetic</subject><subject>cultivars</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genetic markers</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>inheritance (genetics)</subject><subject>interspecific hybridization</subject><subject>Life Sciences</subject><subject>linkage groups</subject><subject>Methods, theories and miscellaneous</subject><subject>microsatellite repeats</subject><subject>Minisatellite Repeats - genetics</subject><subject>peaches</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>Prunus - genetics</subject><subject>Prunus amygdalus</subject><subject>Prunus armeniaca</subject><subject>Prunus davidiana</subject><subject>Prunus dulcis</subject><subject>Prunus persica</subject><subject>Pteridophyta, spermatophyta</subject><subject>restriction fragment length polymorphism</subject><subject>Vegetals</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1u1DAQB3ALgehSeAAu4AuIHlLG4zgfx6oqLdJKINGeo1lnvBtw4sVO-vEQvDOBLIgbp5FGP_1nRiPESwWnCqB8nwAUYgagM2WwyPQjsVK5xgwxx8diBZBDZkqDR-JZSl8BAA3op-JIGShKXdcr8eOSBx47K303fKMty572SQYnx7sgaR87G0ZpJz92txSTfPc5TsOUJMWeh44syfXpibSh31PkVt51406OO5bk-zC08prvKcl7uWeyO3lB0T9sg29lZMeRB_t7nHQhyiX3uXjiyCd-cajH4ubDxfX5Vbb-dPnx_GydOY3FmBnLZoOWENDWOakKqXJQMENlXct5bpTJNwbbTekAWqoKp6zNFVija-0KfSxOltwd-WY-sqf40ATqmquzdfOrB1iUNWq8VbN9u9h9DN8nTmPTd8my9zRwmFJTqgpqVev_QlXW2izw1QFOm57bvwv8-coM3hwAJUveRRpsl_5xRVFCWc7u9eIchYa2cTY3XxCUBqg1AlT6J6FopSs</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Lambert, P</creator><creator>Hagen, L.S</creator><creator>Arus, P</creator><creator>Audergon, J.M</creator><general>Springer</general><general>Springer Verlag</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3132-5815</orcidid></search><sort><creationdate>20040401</creationdate><title>Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus</title><author>Lambert, P ; Hagen, L.S ; Arus, P ; Audergon, J.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f326t-5ce5b2ca202c94a182a8f06ee08cfde445154b52db7f00da86f1cc410c5393f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>almonds</topic><topic>amplified fragment length polymorphism</topic><topic>apricots</topic><topic>Biological and medical sciences</topic><topic>Chromosome Mapping</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Crosses, Genetic</topic><topic>cultivars</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genetic markers</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>inheritance (genetics)</topic><topic>interspecific hybridization</topic><topic>Life Sciences</topic><topic>linkage groups</topic><topic>Methods, theories and miscellaneous</topic><topic>microsatellite repeats</topic><topic>Minisatellite Repeats - genetics</topic><topic>peaches</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>Prunus - genetics</topic><topic>Prunus amygdalus</topic><topic>Prunus armeniaca</topic><topic>Prunus davidiana</topic><topic>Prunus dulcis</topic><topic>Prunus persica</topic><topic>Pteridophyta, spermatophyta</topic><topic>restriction fragment length polymorphism</topic><topic>Vegetals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambert, P</creatorcontrib><creatorcontrib>Hagen, L.S</creatorcontrib><creatorcontrib>Arus, P</creatorcontrib><creatorcontrib>Audergon, J.M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, P</au><au>Hagen, L.S</au><au>Arus, P</au><au>Audergon, J.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus</atitle><jtitle>Theoretical and applied genetics</jtitle><addtitle>Theor Appl Genet</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>108</volume><issue>6</issue><spage>1120</spage><epage>1130</epage><pages>1120-1130</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><coden>THAGA6</coden><abstract>Several genetic linkage maps have been published in recent years on different Prunus species suggesting a high level of resemblance among the genomes of these species. One of these maps (Joobeur et al., Theor Appl Genet 97:1034-1041 [(1998); Aranzana et al., Theor Appl Genet 106:819-825 (2002b)] constructed from interspecific almond Texas x peach Earlygold F2 progeny (TxE) was considered to be saturated. We selected 142 F1 apricot hybrids obtained from a cross between P. armeniaca cvs. Polonais and Stark Early Orange for mapping. Eighty-eight RFLP probes and 20 peach SSR primer pairs used for the 'reference map' were selected to cover the eight linkage groups. One P. davidiana and an additional 14 apricot simple sequence repeats (SSRs) were mapped for the F1 progeny. Eighty-three amplified fragment length polymorphisms were added in order to increase the density of the maps. Separate maps were made for each parent according to the 'double pseudo-testcross' model of analysis. A total of 141 markers were placed on the map of Stark Early Orange, defining a total length of 699 cM, and 110 markers were placed on the map of Polonais, defining a total length of 538 cM. Twenty-one SSRs and 18 restriction placed in the TxE map were heterozygous in both parents (anchor loci), thereby enabling the alignment of the eight homologous linkage groups of each map. Except for 15 markers, most markers present in each linkage group in apricot were aligned with those in TxE map, indicating a high degree of colinearity between the apricot genome and the peach and almond genomes. These results suggest a strong homology of the genomes between these species and probably between Prunophora and Amygdalus sub-genera.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><pmid>15067399</pmid><doi>10.1007/s00122-003-1526-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3132-5815</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2004-04, Vol.108 (6), p.1120-1130
issn 0040-5752
1432-2242
language eng
recordid cdi_hal_primary_oai_HAL_hal_02679232v1
source MEDLINE; SpringerNature Journals
subjects almonds
amplified fragment length polymorphism
apricots
Biological and medical sciences
Chromosome Mapping
Classical genetics, quantitative genetics, hybrids
Crosses, Genetic
cultivars
Fundamental and applied biological sciences. Psychology
genetic markers
Genetics
Genetics of eukaryotes. Biological and molecular evolution
inheritance (genetics)
interspecific hybridization
Life Sciences
linkage groups
Methods, theories and miscellaneous
microsatellite repeats
Minisatellite Repeats - genetics
peaches
Polymorphism, Restriction Fragment Length
Prunus - genetics
Prunus amygdalus
Prunus armeniaca
Prunus davidiana
Prunus dulcis
Prunus persica
Pteridophyta, spermatophyta
restriction fragment length polymorphism
Vegetals
title Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20linkage%20maps%20of%20two%20apricot%20cultivars%20(Prunus%20armeniaca%20L.)%20compared%20with%20the%20almond%20Texas%20x%20peach%20Earlygold%20reference%20map%20for%20Prunus&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Lambert,%20P&rft.date=2004-04-01&rft.volume=108&rft.issue=6&rft.spage=1120&rft.epage=1130&rft.pages=1120-1130&rft.issn=0040-5752&rft.eissn=1432-2242&rft.coden=THAGA6&rft_id=info:doi/10.1007/s00122-003-1526-3&rft_dat=%3Cproquest_hal_p%3E17935193%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17935193&rft_id=info:pmid/15067399&rfr_iscdi=true