Role of transposable elements in heterochromatin and epigenetic control
Heterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and wer...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2004-07, Vol.430 (6998), p.471-476 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 6998 |
container_start_page | 471 |
container_title | Nature (London) |
container_volume | 430 |
creator | Lippman, Z Gendrel, A.V Black, M Vaughn, M.W Dedhia, N McCombie, W.R Lavine, K Mittal, V May, B Kasschau, K.D |
description | Heterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and were first described in maize. These regions are repetitive and late-replicating. In Drosophila, heterochromatin influences gene expression, a heterochromatin phenomenon called position effect variegation. Similarities between position effect variegation in Drosophila and gene silencing in maize mediated by "controlling elements" (that is, transposable elements) led in part to the proposal that heterochromatin is composed of transposable elements, and that such elements scattered throughout the genome might regulate development. Using microarray analysis, we show that heterochromatin in Arabidopsis is determined by transposable elements and related tandem repeats, under the control of the chromatin remodelling ATPase DDM1 (Decrease in DNA Methylation 1). Small interfering RNAs (siRNAs) correspond to these sequences, suggesting a role in guiding DDM1. We also show that transposable elements can regulate genes epigenetically, but only when inserted within or very close to them. This probably accounts for the regulation by DDM1 and the DNA methyltransferase MET1 of the euchromatic, imprinted gene FWA, as its promoter is provided by transposable-element-derived tandem repeats that are associated with siRNAs. |
doi_str_mv | 10.1038/nature02651 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02677166v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186360862</galeid><sourcerecordid>A186360862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c704t-fb7056be94f1352c7bb164749186bacbd4fbd05427dc9f6de6d9d610b33212463</originalsourceid><addsrcrecordid>eNqF0u-L0zAYB_AiijdPX_ley4HCoT2f_GjSvhxD7w6Gwv3AlyFNk61Hm-ySVvS_N3XDbTIZhZaknz4N3-dJktcILhCQ4pOV_eA1YJajJ8kEUc4yygr-NJkA4CKDgrCT5EUIDwCQI06fJycox6zknEySyxvX6tSZtPfShpULsopr3epO2z6kjU2XutfeqaV3nezjWto61atmoa3uG5UqZ3vv2pfJMyPboF9tnqfJ_ZfPd7OrbP7t8no2nWeKA-0zU3HIWaVLahDJseJVhRjltEQFq6SqamqqGnKKea1Kw2rN6rJmCCpCMMKUkdPkfF13KVux8k0n_S_hZCOupnMx7sUcOEeM_UDRvl_blXePgw696JqgdNtKq90QBGOcYA78KCQMFUU891EYz1hQQo5DVAAUGEZ49g98cIO3MUKBgeY4J39QtkYL2WrRWONit9TYAS9bZ7Vp4vY0RkgYFAxvi-55tWoexS66OIDiVeuuUQernu99MHZe_-wXcghBXN_e7NsP_7fTu--zrwe18i4Er83fziIQ44yLnRmP-s0msqHqdL21m6GO4N0GyKBka-JkqybsuJID8DHWj2sX4iu70H6b_eH_vl1zI52QCx9L3t9iQASgpDjeyG900BbP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204525306</pqid></control><display><type>article</type><title>Role of transposable elements in heterochromatin and epigenetic control</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Lippman, Z ; Gendrel, A.V ; Black, M ; Vaughn, M.W ; Dedhia, N ; McCombie, W.R ; Lavine, K ; Mittal, V ; May, B ; Kasschau, K.D</creator><creatorcontrib>Lippman, Z ; Gendrel, A.V ; Black, M ; Vaughn, M.W ; Dedhia, N ; McCombie, W.R ; Lavine, K ; Mittal, V ; May, B ; Kasschau, K.D</creatorcontrib><description>Heterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and were first described in maize. These regions are repetitive and late-replicating. In Drosophila, heterochromatin influences gene expression, a heterochromatin phenomenon called position effect variegation. Similarities between position effect variegation in Drosophila and gene silencing in maize mediated by "controlling elements" (that is, transposable elements) led in part to the proposal that heterochromatin is composed of transposable elements, and that such elements scattered throughout the genome might regulate development. Using microarray analysis, we show that heterochromatin in Arabidopsis is determined by transposable elements and related tandem repeats, under the control of the chromatin remodelling ATPase DDM1 (Decrease in DNA Methylation 1). Small interfering RNAs (siRNAs) correspond to these sequences, suggesting a role in guiding DDM1. We also show that transposable elements can regulate genes epigenetically, but only when inserted within or very close to them. This probably accounts for the regulation by DDM1 and the DNA methyltransferase MET1 of the euchromatic, imprinted gene FWA, as its promoter is provided by transposable-element-derived tandem repeats that are associated with siRNAs.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02651</identifier><identifier>PMID: 15269773</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>adenosinetriphosphatase ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis thaliana ; Biological and medical sciences ; Cellular Biology ; chromatin remodeling adenosinetriphosphatase ; Chromosomes, Plant - genetics ; Cluster Analysis ; Corn ; Deoxyribonucleic acid ; DNA ; DNA (Cytosine-5-)-Methyltransferases - metabolism ; DNA Methylation ; DNA methyltransferase ; DNA Transposable Elements - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drosophila ; Epigenesis, Genetic - genetics ; epigenetics ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; FWA gene ; gene expression regulation ; Gene Expression Regulation, Plant ; Genes ; Genetics ; Genic rearrangement. Recombination. Transposable element ; Genomic Imprinting ; Heterochromatin ; Heterochromatin - genetics ; Homeodomain Proteins - genetics ; Humanities and Social Sciences ; letter ; Life Sciences ; methyltransferases ; microarray technology ; Molecular and cellular biology ; Molecular genetics ; multidisciplinary ; Oligonucleotide Array Sequence Analysis ; repetitive sequences ; RNA ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Science ; small interfering RNA ; Tandem Repeat Sequences - genetics ; Transcription Factors - genetics ; Transcription Factors - metabolism ; transposons ; Zea mays</subject><ispartof>Nature (London), 2004-07, Vol.430 (6998), p.471-476</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jul 22, 2004</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c704t-fb7056be94f1352c7bb164749186bacbd4fbd05427dc9f6de6d9d610b33212463</citedby><cites>FETCH-LOGICAL-c704t-fb7056be94f1352c7bb164749186bacbd4fbd05427dc9f6de6d9d610b33212463</cites><orcidid>0000-0002-6382-1610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature02651$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature02651$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15970076$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15269773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02677166$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lippman, Z</creatorcontrib><creatorcontrib>Gendrel, A.V</creatorcontrib><creatorcontrib>Black, M</creatorcontrib><creatorcontrib>Vaughn, M.W</creatorcontrib><creatorcontrib>Dedhia, N</creatorcontrib><creatorcontrib>McCombie, W.R</creatorcontrib><creatorcontrib>Lavine, K</creatorcontrib><creatorcontrib>Mittal, V</creatorcontrib><creatorcontrib>May, B</creatorcontrib><creatorcontrib>Kasschau, K.D</creatorcontrib><title>Role of transposable elements in heterochromatin and epigenetic control</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Heterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and were first described in maize. These regions are repetitive and late-replicating. In Drosophila, heterochromatin influences gene expression, a heterochromatin phenomenon called position effect variegation. Similarities between position effect variegation in Drosophila and gene silencing in maize mediated by "controlling elements" (that is, transposable elements) led in part to the proposal that heterochromatin is composed of transposable elements, and that such elements scattered throughout the genome might regulate development. Using microarray analysis, we show that heterochromatin in Arabidopsis is determined by transposable elements and related tandem repeats, under the control of the chromatin remodelling ATPase DDM1 (Decrease in DNA Methylation 1). Small interfering RNAs (siRNAs) correspond to these sequences, suggesting a role in guiding DDM1. We also show that transposable elements can regulate genes epigenetically, but only when inserted within or very close to them. This probably accounts for the regulation by DDM1 and the DNA methyltransferase MET1 of the euchromatic, imprinted gene FWA, as its promoter is provided by transposable-element-derived tandem repeats that are associated with siRNAs.</description><subject>adenosinetriphosphatase</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Cellular Biology</subject><subject>chromatin remodeling adenosinetriphosphatase</subject><subject>Chromosomes, Plant - genetics</subject><subject>Cluster Analysis</subject><subject>Corn</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA (Cytosine-5-)-Methyltransferases - metabolism</subject><subject>DNA Methylation</subject><subject>DNA methyltransferase</subject><subject>DNA Transposable Elements - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drosophila</subject><subject>Epigenesis, Genetic - genetics</subject><subject>epigenetics</subject><subject>Flowers & plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>FWA gene</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Genomic Imprinting</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Homeodomain Proteins - genetics</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Life Sciences</subject><subject>methyltransferases</subject><subject>microarray technology</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>multidisciplinary</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>repetitive sequences</subject><subject>RNA</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Science</subject><subject>small interfering RNA</subject><subject>Tandem Repeat Sequences - genetics</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>transposons</subject><subject>Zea mays</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0u-L0zAYB_AiijdPX_ley4HCoT2f_GjSvhxD7w6Gwv3AlyFNk61Hm-ySVvS_N3XDbTIZhZaknz4N3-dJktcILhCQ4pOV_eA1YJajJ8kEUc4yygr-NJkA4CKDgrCT5EUIDwCQI06fJycox6zknEySyxvX6tSZtPfShpULsopr3epO2z6kjU2XutfeqaV3nezjWto61atmoa3uG5UqZ3vv2pfJMyPboF9tnqfJ_ZfPd7OrbP7t8no2nWeKA-0zU3HIWaVLahDJseJVhRjltEQFq6SqamqqGnKKea1Kw2rN6rJmCCpCMMKUkdPkfF13KVux8k0n_S_hZCOupnMx7sUcOEeM_UDRvl_blXePgw696JqgdNtKq90QBGOcYA78KCQMFUU891EYz1hQQo5DVAAUGEZ49g98cIO3MUKBgeY4J39QtkYL2WrRWONit9TYAS9bZ7Vp4vY0RkgYFAxvi-55tWoexS66OIDiVeuuUQernu99MHZe_-wXcghBXN_e7NsP_7fTu--zrwe18i4Er83fziIQ44yLnRmP-s0msqHqdL21m6GO4N0GyKBka-JkqybsuJID8DHWj2sX4iu70H6b_eH_vl1zI52QCx9L3t9iQASgpDjeyG900BbP</recordid><startdate>20040722</startdate><enddate>20040722</enddate><creator>Lippman, Z</creator><creator>Gendrel, A.V</creator><creator>Black, M</creator><creator>Vaughn, M.W</creator><creator>Dedhia, N</creator><creator>McCombie, W.R</creator><creator>Lavine, K</creator><creator>Mittal, V</creator><creator>May, B</creator><creator>Kasschau, K.D</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7QO</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6382-1610</orcidid></search><sort><creationdate>20040722</creationdate><title>Role of transposable elements in heterochromatin and epigenetic control</title><author>Lippman, Z ; Gendrel, A.V ; Black, M ; Vaughn, M.W ; Dedhia, N ; McCombie, W.R ; Lavine, K ; Mittal, V ; May, B ; Kasschau, K.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c704t-fb7056be94f1352c7bb164749186bacbd4fbd05427dc9f6de6d9d610b33212463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>adenosinetriphosphatase</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Cellular Biology</topic><topic>chromatin remodeling adenosinetriphosphatase</topic><topic>Chromosomes, Plant - genetics</topic><topic>Cluster Analysis</topic><topic>Corn</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA (Cytosine-5-)-Methyltransferases - metabolism</topic><topic>DNA Methylation</topic><topic>DNA methyltransferase</topic><topic>DNA Transposable Elements - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drosophila</topic><topic>Epigenesis, Genetic - genetics</topic><topic>epigenetics</topic><topic>Flowers & plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>FWA gene</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Genomic Imprinting</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Homeodomain Proteins - genetics</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Life Sciences</topic><topic>methyltransferases</topic><topic>microarray technology</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>multidisciplinary</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>repetitive sequences</topic><topic>RNA</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Science</topic><topic>small interfering RNA</topic><topic>Tandem Repeat Sequences - genetics</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>transposons</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lippman, Z</creatorcontrib><creatorcontrib>Gendrel, A.V</creatorcontrib><creatorcontrib>Black, M</creatorcontrib><creatorcontrib>Vaughn, M.W</creatorcontrib><creatorcontrib>Dedhia, N</creatorcontrib><creatorcontrib>McCombie, W.R</creatorcontrib><creatorcontrib>Lavine, K</creatorcontrib><creatorcontrib>Mittal, V</creatorcontrib><creatorcontrib>May, B</creatorcontrib><creatorcontrib>Kasschau, K.D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lippman, Z</au><au>Gendrel, A.V</au><au>Black, M</au><au>Vaughn, M.W</au><au>Dedhia, N</au><au>McCombie, W.R</au><au>Lavine, K</au><au>Mittal, V</au><au>May, B</au><au>Kasschau, K.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of transposable elements in heterochromatin and epigenetic control</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-07-22</date><risdate>2004</risdate><volume>430</volume><issue>6998</issue><spage>471</spage><epage>476</epage><pages>471-476</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Heterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and were first described in maize. These regions are repetitive and late-replicating. In Drosophila, heterochromatin influences gene expression, a heterochromatin phenomenon called position effect variegation. Similarities between position effect variegation in Drosophila and gene silencing in maize mediated by "controlling elements" (that is, transposable elements) led in part to the proposal that heterochromatin is composed of transposable elements, and that such elements scattered throughout the genome might regulate development. Using microarray analysis, we show that heterochromatin in Arabidopsis is determined by transposable elements and related tandem repeats, under the control of the chromatin remodelling ATPase DDM1 (Decrease in DNA Methylation 1). Small interfering RNAs (siRNAs) correspond to these sequences, suggesting a role in guiding DDM1. We also show that transposable elements can regulate genes epigenetically, but only when inserted within or very close to them. This probably accounts for the regulation by DDM1 and the DNA methyltransferase MET1 of the euchromatic, imprinted gene FWA, as its promoter is provided by transposable-element-derived tandem repeats that are associated with siRNAs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15269773</pmid><doi>10.1038/nature02651</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6382-1610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2004-07, Vol.430 (6998), p.471-476 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02677166v1 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | adenosinetriphosphatase Arabidopsis Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis thaliana Biological and medical sciences Cellular Biology chromatin remodeling adenosinetriphosphatase Chromosomes, Plant - genetics Cluster Analysis Corn Deoxyribonucleic acid DNA DNA (Cytosine-5-)-Methyltransferases - metabolism DNA Methylation DNA methyltransferase DNA Transposable Elements - genetics DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Drosophila Epigenesis, Genetic - genetics epigenetics Flowers & plants Fundamental and applied biological sciences. Psychology FWA gene gene expression regulation Gene Expression Regulation, Plant Genes Genetics Genic rearrangement. Recombination. Transposable element Genomic Imprinting Heterochromatin Heterochromatin - genetics Homeodomain Proteins - genetics Humanities and Social Sciences letter Life Sciences methyltransferases microarray technology Molecular and cellular biology Molecular genetics multidisciplinary Oligonucleotide Array Sequence Analysis repetitive sequences RNA RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Science small interfering RNA Tandem Repeat Sequences - genetics Transcription Factors - genetics Transcription Factors - metabolism transposons Zea mays |
title | Role of transposable elements in heterochromatin and epigenetic control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20transposable%20elements%20in%20heterochromatin%20and%20epigenetic%20control&rft.jtitle=Nature%20(London)&rft.au=Lippman,%20Z&rft.date=2004-07-22&rft.volume=430&rft.issue=6998&rft.spage=471&rft.epage=476&rft.pages=471-476&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02651&rft_dat=%3Cgale_hal_p%3EA186360862%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204525306&rft_id=info:pmid/15269773&rft_galeid=A186360862&rfr_iscdi=true |